Двухтактный ультралинейный ламповый УНЧ на EL84 (6П14П). Современный подход к классической теме

На сегодняшний день применение современной элементной базы позволяет малым количеством недорогих элементов весьма качественно задавать режимы работы электронных ламп. Данная статья описывает процесс и результаты создания гибридных (транзисторно-ламповых) УМЗЧ, сохраняющих в полном объеме «ламповость» усилительных каскадов и использующих кремневые элементы для ввода электровакуумных приборов в оптимальные режимы работы.

Перед разбором принципа работы прошу обратить внимание на то, что участки схемы находятся под напряжением опасным для жизни. При конструировании устройств с электровакуумными приборами, а также других с питанием от сети 220В обязательно знать и соблюдать правила электробезопасности.

Особенностью схемы является работа в двухтактном (push-pull) режиме как предусилителя, так и выходного каскада, что положительно сказывается на коэффициенте нелинейных искажений и выходной мощности (10 Вт).

Предварительный каскад усиления и фазоинвертор выполнен по схеме дифференциального усилителя на двойном триоде ECC802S (VL1.1, 1.2), данная лампа может быть заменена на 12AU7, ECC82, 6Н5П или 6Н1П, но мной проводились эксперименты именно с ECC802S производства JJ Electronic. Рабочая точка каскада обеспечивается источником постоянного тока (constant current source) на микросхеме LM317 (DA1) и резисторе R12. Разделительные конденсаторы С1, С2 обеспечивают отсечку постоянной составляющей сигнала для работы оконечного каскада. К ним предъявляются высокие требования, использование Cross-cap хорошее решение, но принимая во внимание высокую цену на продукцию Jantzen Audio, возможно применение серии ECWFD фирмы Panasonic, которая вполне справляется с поставленной задачей.

Выходной каскад построен по классической двухтактной схеме с обратной связью от ультралинейных отводов выходного трансформатора на пентодах EL84, аналогом которых являются лампы 6BQ5 и отечественная 6П14П. Рабочая точка на ВАХ обеспечивается источником тока на DA2 и R13. При наладке схемы необходимо добиться одинакового катодного тока ламп VL2 и VL3 регулировкой подстроечного резистора R9.

Сеточные резисторы (grid-stopper resistors) R7, R8, R10, R11 выполняют роль защиты от превышения сеточного тока, а также (R10, R11) уменьшают высокочастотную генерацию от резонанса индуктивности рассеяния и межобмоточной емкости выходного трансформатора. Частота этого колебательного контура, обычно, расположена выше звукового диапазона и не воспринимается на слух, но усиление сигнала на этих частотах прогревает лампы и в целом негативно отражается на характеристиках усилителя.

Цепь накала электровакуумных приборов данной схемы может быть запитана как от 6,3 В так и от 12,6 В в зависимости от соединения спиралей. Я использую постоянное стабилизированное напряжение накала 12,6 В, с применением все той же LM317, хотя крайней необходимости в использовании линейного регулятора в цепи накала нет.

Что касается анодного напряжения ламп тут дела обстоят иначе. Схема весьма чувствительна к нестабильности и шумам в цепи высокого напряжения. Кардинальным решением в борьбе с этим явлением будет применение высоковольтного стабилизатора, например, по схеме, представленной ниже. Более простым решением может быть использование только П-фильтра на L1, С8 и С9. Стабилизатор DA3 и mosfet-транзистор IRF820 необходимо располагать на радиаторах общей площадью теплоотвода не менее 20 см2.

Выходной трансформатор с броневым магнитопроводом изготовлен из железа М4 Cut-core без немагнитного зазора с габаритными размерами, представленными на рисунке.

Обмотка каждой половины выполнена по схеме 2p-2S-5p-2S-6p-2S-5p-2S-2p, где p = 85 витков провода ПЭТВ-2 0,2 мм, 2S = 75 витков (38+37) провода ПЭТВ-2 0,45 мм. Изоляция — электрокартон 0,1 мм между каждым слоем. Общее число витков первичной обмотки 1700×2 последовательно, вторичной параллельно 75×8 для нагрузки 4 Ом и 100×6 (75+25)x6 для 8 Ом. Для возможности подключения 8 Ом нагрузки необходимо разделить одну из секций вторичной обмотки каждой половины на 3 части, т.е. 25+25+25 = 75 и добавить по 25 витков к основным секциям. Ультралинейные отводы 43% от 1700, т.е. на 731-ом витке в каждой половине. Направление намотки обоих половин должно быть симметрично относительно центральной перегородки. При использовании магнитопровода с указанными габаритами необходимо весьма жестко соблюдать укладку виток к витку слоев, плотность обжатия изоляции и выполнять отводы снаружи магнитопровода, иначе может не влезть. Результатом будет высокая степень заполнения окна медью и примерно равное суммарное сечение меди первичной и вторичной обмоток. Вертикальное секционирование даст одинаковые активные сопротивления полуобмоток в пределах 155-165 Ом, а горизонтальное позволит добиться индуктивности рассеяния в пределах 5-7мГн, что весьма полезно при изготовление качественных выходных трансформаторов.

АЧХ и ФЧХ усилителя показывают высокую степень линейности в звуковом диапазоне. Измерения сигнала производились при 4 Вт выходной мощности на резистивную нагрузку 8 Ом.

Корпус устройства на данный момент находится в разработке, а так выглядит макет одного канала усилителя:

Список радиоэлементовОбозначение
Тип
Номинал
Количество
ПримечаниеМагазинМой блокнот

VL1
РадиолампаECC802S1
JJ Electronic VL2, VL3
РадиолампаEL842
6П14П DA1-DA3
Линейный регуляторLM3173
DA4
Линейный регуляторLR8K41
Microchip T1
MOSFET-транзисторIRF8201
D1-D4
Выпрямительный диодUF30024
D5-D8
Выпрямительный диодUF40044
ZD1
Стабилитрон1N4746A1
R1
Переменный резистор50 кОм1
R2
Резистор1 кОм1
R3, R4
Резистор30 кОм2
1 Вт R5, R6
Резистор220 кОм2
R7, R8
Резистор1 кОм2
R9
Подстроечный резистор25 Ом1
R10, R11
Резистор1 кОм2
R12
Резистор180 Ом1
R13
Резистор15 Ом1
1 Вт R14
Резистор2.2 кОм1
R15
Резистор240 Ом1
R16, R18
Резистор100 кОм2
R17
Резистор470 Ом1
R19
Резистор100 Ом1
C1, C2
Конденсатор0.47 мкФ2
400 В C3
Конденсатор4700 мкФ1
25 В C4
Конденсатор1000 мкФ1
25 В C5, C8, C9
Конденсатор100 мкФ3
400 В C6
Конденсатор100 нФ1
400 В C7
Конденсатор22 мкФ1
400 В L1
Дроссель4 Гн1
120 мА Добавить все

Скачать список элементов (PDF)

Теги:

Добавить комментарий

Ваш адрес email не будет опубликован.