Блок питания радиоприёмника из электронного балласта ЛДС

В настоящее время вероятно у каждого радиолюбителя в загашнике хранятся электронные балласты от вышедших из строя компактных люминесцентных ламп. С одной стороны, это почти готовый, лёгкий и малогабаритный сетевой блок питания, который легко можно поместить в корпус радиоприёмника, с другой – его переделка далеко не всегда приводит к желаемым результатам. В Интернете можно встретить большое количество схем различных электронных балластов и описаний по их переделке. Но они, как правило, рассчитаны на определённую более или менее постоянную нагрузку. Для питания радиоприёмника такие схемы не подходят, т. к. нагрузка на источник питания в радиоприёмнике может колебаться почти от нуля до максимума, в зависимости от громкости.

Дело в том, что электронные балласты изначально спроектированы под конкретный ток, потребляемый лампой. Возьмём типичную схему электронного балласта ЛДС (рис.1).


Рис.1. Типовая схема электронного балласта

Здесь мы видим, что схема представляет собой простой полумостовой нерегулируемый автогенераторный инвертор с коммутирующим насыщающимся трансформатором Т1. Генератор на транзисторах VT1 и VT2 питается от мостового выпрямителя на диодах D1…D4 со сглаживающим пульсации  конденсатором С1. Элементы R1, R2, C2, C3, D5, D8 служат для запуска генератора, диоды D6, D7 защищают транзисторы от пробоя напряжением самоиндукции дросселя L2. Резисторы R3, R4 ограничивают пиковые значения тока транзисторов, а резисторы R5, R6 ограничивают ток базы соответствующего транзистора. Нагрузкой генератора служит лампа, подключенная через дроссель L2 к диагонали моста, образованного транзисторами VT1, VT2 и конденсаторами С4,С6.

Обмотка w2 положительной обратной связи (ПОС) генератора включена последовательно с нагрузкой и, следовательно, мы имеем ПОС по току. Применение ПОС по току позволяет к моменту выключения автоматически вывести транзистор из насыщения, уменьшить время рассасывания заряда и снизить потери мощности в цепях управления. Но при большом сопротивлении нагрузки ток через обмотку w2 может оказаться слишком малым для того, чтобы на обмотках w1 и w3 образовались достаточное по величине напряжение для открывания ключевых транзисторов. В результате генератор не запустится.

По этой причине для питания радиоприёмника через данный инвертор недостаточно просто заменить дроссель L2 и лампу EL1 в схеме рис.1 на импульсный трансформатор, как описано во многих статьях. Для самовозбуждения генератора без нагрузки необходимо ввести ПОС по напряжению, в результате получим схему, изображённую на рисунке 2.


Рис. 2. Схема переделанного электронного балласта

Чтобы ввести в схему ПОС по напряжению нужно намотать на существующем коммутирующем трансформаторе T1, выполненном на небольшом ферритовом колечке, три витка одножильного провода диаметром 0,15…0,2 мм и соединить его через резистор Rос сопротивлением 2…3 ома с дополнительной обмоткой на силовом трансформаторе содержащей 2 витка провода такого же диаметра.

Т. к. электронные балласты от сгоревших экономок по сути являются бросовыми материалами, то и затраты времени и средств на переделку должны быть минимальными. Иначе, как говорится, овчинка не стоит выделки. При переделке электронного балласта весьма желательно «вписаться» в существующие габариты платы, иначе если например, трансформатор будет помещаться отдельно от платы, придётся протягивать по радиоприёмнику провода к нему. А это очень неудобно и не технологично, особенно если учесть, что по этим проводам проходят импульсы высокого напряжения и частоты. Существующий дроссель L2 для изготовления трансформатора не годится, т. к. изготовлен из феррита с низкой магнитной проницаемостью, поэтому его нужно удалить, а на его место установить силовой трансформатор.

Лучше всего, на мой взгляд, для силового трансформатора подходит дешёвый ферритовый сердечник типоразмера ЕЕ16/8/5 и 2-хсекционный каркас к нему. Такой трансформатор точно подходит по посадочному месту дросселя L2.  Я приобретал для этой цели сердечники из феррита ТР4А (аналоги – EE16G, N97, N53) по цене 9 центов за пару и 2-хсекционные каркасы к ним BV-EF16-2-6Q по цене 14 центов условных американских денег. Средние выводы каркаса, если они есть, необходимо удалить. Выводы первичной обмотки припаять к тем штырькам каркаса, которые соответствуют печатной плате. Выводы вторичной обмотки после установки трансформатора на своё место, припаять к тем выходам платы, к которым были припаяны выводы люминесцентной лампы. Конденсатор С5 нужно удалить. Выводы обмотки обратной связи можно не припаивать к плате, а через резистор Rос непосредственно соединить с дополнительной обмоткой токового трансформатора Т1. Я для этой цели использовал обрезанные части дорожек, идущих к лампе. После сборки трансформатора нужно прочно стянуть между собой половинки сердечника, например, с помощью ниток с последующей пропиткой их клеем или лаком. Сверху обмотки защитить двумя – тремя слоями лакоткани.

Собранный трансформатор будет выглядеть более аккуратно, если половинки ферритового сердечника скрепить прочной изоляционной полиэстеровой лентой шириной 5 мм и этой же лентой обмотать поверх готовых обмоток. Тип ленты TEA-5K5-05.0mm.

Упомянутые выше сердечники имеют магнитную проницаемость µ=2300, максимальную индукцию Bmc=0,45 Т. Для этих значений и, исходя из геометрических размеров сердечника, был произведён расчёт числа витков трансформатора. Первичная обмотка содержит 165 витков провода ПЭВ-0,2. Вторичная обмотка была намотана двумя проводами ПЭВ-0,4, сложенными вместе. Число витков вторичной обмотки зависит от величины напряжения питания радиоприёмника, схемы выпрямления и наличия стабилизатора напряжения. Для указанного числа витков первичной обмотки на каждый виток вторичной обмотки приходится около 0,9 В.

Выпрямитель придётся разместить вне платы электронного балласта. В данном случае можно применить как схему выпрямления со средней точкой (Рис. 4), так и мостовую схему выпрямления (Рис. 3).

Наиболее просто применить мостовую схему выпрямления, однако нужно не забывать, что при этом потери мощности на диодах будут в два раза больше, чем в схеме выпрямления со средней точкой. Впрочем, запаса мощности преобразователя вполне хватает для питания большинства транзисторных радиоприёмников.


Рис.3. Мостовая схема выпрямления

Схема выпрямления со средней точкой имеет всего два выпрямительных диода, следовательно, потери мощности на диодах в ней меньше, однако потребуется три провода для связи с платой преобразователя и, кроме того, необходимо соединить выводы вторичной обмотки последовательно, как показано на рис. 4.

В качестве диодов для выпрямителя подойдут широко распространённые диоды типа 1N4007. Можно, конечно использовать и готовые выпрямительные мостики, например, типа 2W10.


Рис. 4. Схема выпрямления со средней точкой

Необходимо заметить, что указанное число витков вторичной обмотки (пятнадцать) было рассчитано на применение интегрального стабилизатора напряжения L7809, включенного после выпрямителя. Но практика применения показала, что блок питания хорошо держит нагрузку и устанавливать стабилизатор не обязательно.

Если блок питания будет использоваться без стабилизатора, то число витков вторичной обмотки нужно уменьшить. Так для получения выходного напряжения 9 вольт нужно намотать 12 витков провода. Это значение может измениться в зависимости от конкретной марки феррита и количества витков первичной обмотки.

И в заключение вставляю фотографии моего варианта блока питания.


Рис.5. Преобразователь после переделки

Проводом в розовой изоляции намотана обмотка обратной связи по напряжению. Резистор Rос составлен из 2-х последовательно соединённых резисторов сопротивлением 1 ом и мощностью 0,25 Вт.

 
Рис.6. Блок питания готовый к использованию


Рис. 7. Слушаем радио

Список радиоэлементовОбозначение
Тип
Номинал
Количество
ПримечаниеМагазинМой блокнот

Рис.1. Типовая схема электронного балласта.VT1, VT2
Биполярный транзисторMJE130032
D1-D4, D6, D7
Выпрямительный диод1N40071
D5
Диод1
D8
ДинисторDB31
С1
Электролитический конденсатор6.8 мкФ 400 В1
С2
Конденсатор0.022 мкФ1
С3
Конденсатор1000 пФ1
С4, С6
Конденсатор0.1 мкФ2
С5
Конденсатор3900 пФ1
R1, R2
Резистор560 кОм2
R3, R4
Резистор1 Ом2
R5, R6, R
Резистор10 Ом3
F1
Предохранитель1
Т1
Трансформатор1
L1
Дроссель1 мкГн1
L2
Дроссель2.5 мкГн1
EL1
Лампа дневного света20 Вт1
Рис. 2. Схема переделанного электронного балласта.VT1, VT2
Биполярный транзисторMJE130032
D1-D4, D6, D7
Выпрямительный диод1N40071
D5
Диод1
D8
ДинисторDB31
С1
Электролитический конденсатор6.8 мкФ 400 В1
С2
Конденсатор0.022 мкФ1
С3
Конденсатор1000 пФ1
С4, С6
Конденсатор0.1 мкФ2
R1, R2
Резистор560 кОм2
R3, R4
Резистор1 Ом2
R5, R6, R
Резистор10 Ом3
Roc
Резистор2 Ом1
0.5 ВтF1
Предохранитель1
Т1, Т2
Трансформатор2
L1
Дроссель1 мкГн1
Рис.3. Мостовая схема выпрямления.VD1-VD4
Диод4
С1
Электролитический конденсатор10 мкФ1
Т2
Трансформатор1
Рис. 4. Схема выпрямления со средней точкой.VD1, VD2
Диод2
С1
Электролитический конденсатор10 мкФ1
Т2
Трансформатор1
Добавить все

Скачать список элементов (PDF)

Добавить комментарий

Ваш адрес email не будет опубликован.