S1D15G14 Series

NOTICE No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from the Ministry of International Trade and Industry or other approval from anther government agency.

All other product names mentioned herein are trademarks and/or registered trademarks of their respective

companies.

©SEIKO EPSON CORPORATION 2003, All rights reserved.

CONTENTS

1.	DESCRIPTION	1
2.	FEATURES	1
3.	BLOCK DIAGRAM	2
4.	PIN LAYOUT	3
5.	PIN COORDINATES	4
6.	SERIES SPECIFICATIONS	8
7.	PIN DESCRIPTION	9
8.	FUNCTIONAL DESCRIPTION	12
9.	COMMANDS	32
10.	ABSOLUTE MAXIMUM RATING	62
11.	ELECTRIC CHARACTERISTICS	63
12.	AC CHARACTERISTICS	65
13.	CONNECTION BETWEEN LCD PANELS	73
14.	EXAMPLE EXTERNAL CONNECTION	77
15.	MPU INTERFACE	78
16.	PRECAUTIONS	81

1. DESCRIPTION

The S1D15G14 is the LCD drivers equipped with the LCD drive power circuit to realize color display with one chip.

The S1D15G14 can be connected to a microprocessor directly, display data are stored in the on-chip display data RAM (=DDRAM). And 312 segment outputs and 82 common outputs are generated for driving LCD. It incorporates the DDRAM with capacity of 312×4(16 gray scale)×84. A single dot of pixel on the LCD corresponds to 4bits of the DDRAM, enabling to display 104(RGB)×82 pixels with one chip. Also accurate LCD driving voltages are generated with built-in power supply circuit.

2. FEATURES

LCD driving

- 312 segment and 82 common LCD drive output
- 4096 colors, or 256 colors from 4096 colors (Normal mode), 8 colors(Idle mode) can be displayed
- PWM grayscale drive by conventional driving
- LCD driving duty selectable : 1/82duty, 1/67duty
- · Partial display
- Correspondence between DDRAM and LCD

```
Bit data of DDRAM "0,0,0,0" ... OFF "1,1,1,1" ... ON
```

*ON/OFF indicate if voltage is applied to the LCD at the time of normal display.

DDRAM capacity: 312×4×84=104,832bits

MPU interface

- 2 types of serial interface are available : 8bits, 9bits (D/C + 8bit data)
- Parallel interface is available

Built in circuit

• LCD power supply circuit

voltage booster, voltage divider and voltage follower: bias ratio 1/9,1/8,1/7,1/6,1/5 selectable voltage regulator: high accurate

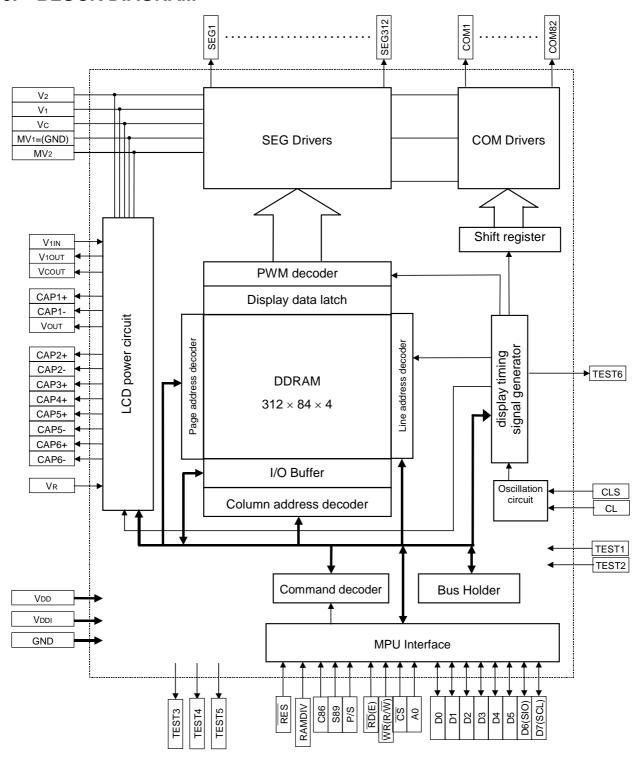
Built-in CR oscillator

Power supply

• Power supply voltage

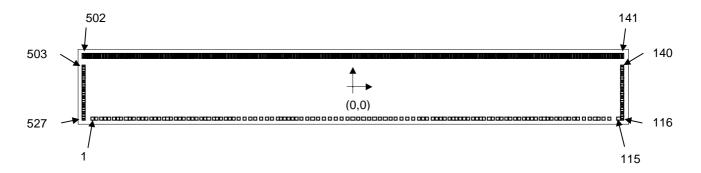
Input/Output power supply: VDDI-GND= 1.6V to 3.6V Internal power supply: VDD-GND= 2.35V to 3.6V LCD driving power supply: V2-MV2= 10.0V to 25.5V

• Current consumption : 400µA(1/6bias, 85Hz frame frequency, Vseg= 3.3V, normal mode)


Others

- Shipping form : Au bump bare chip
- Wide range of operating temperatures -40 to +85°C

Notice


• This IC is not designed for strong radio/optical activity proof.

3. BLOCK DIAGRAM

4. PIN LAYOUT

DIE layout

Chip size: $14720\mu m \times 2020\mu m$

Chip thickness: $400 \mu m \pm 25 \mu m$ (for reference): This value is specified in delivery specification.

Die No.: Refer "6. SERIES SPECIFICATIONS"

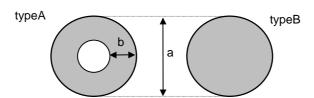
Potential of back side: GND level

BUMP

Bump pitch: 40µm min.

Bump size: $26\mu m \times 135\mu m$: PIN No.141-No.502

 $80\mu m \times 40\mu m$: PIN No.116-No.140, No.503-No.527


 $82\mu m \times 90\mu m$: PIN No.1-115

Bump height: $22.5\mu m \pm 4\mu m$ (for reference): This value is specified in delivery specification.

Alignment mark

Coordinate: typeA(-7107.25,695), typeB(7107.25,695)

Size: $a = 80 \mu m, b = 20 \mu m$

5. PIN COORDINATES

Unit: µm

Pin No.	Pin Name	Х	Υ	Pin No.	Pin Name	Х	Υ	Pii No	I Pin Name	х	Υ
1	CAP6-	-6971.1	-856.5	51	D2	-1083	-856.5	10	CAP1+	5213	-856.5
2	CAP6-	-6871.1		52	D3	-929		102	CAP1+	5313	
3	CAP6-	-6771.1		53	D4	-775		103	3 VR	5447	
4	CAP6+	-6637.1		54	D5	-621		104	l Vr	5547	
5	CAP6+	-6537.1		55	D6(SIO)	-467		10	5 V1	5681	
6	CAP6+	-6437.1		56	D7(SCL)	-313		100	S V1	5781	
7	CAP5-	-6303.1		57	TEST6	-159		10	' GND	5915	
8	CAP5-	-6203.1		58	VDDI *1	-5		108	GND	6015	
9	CAP5-	-6103.1		59	RAMDIV	129		109	TEST4	6169	
10	CAP5+	-5969.1		60	GND *1	283		110	TEST3	6323	
11	CAP5+	-5869.1		61	PS	417		11	VDD	6477	
12	CAP5+	-5769.1		62	VDDI *1	571		112	2 VDD	6577	
13	CAP2-	-5635.1		63	C86	705		113		6711	
14	CAP2-	-5535.1		64	S89	859		114	TEST5	6865	
15	CAP2-	-5435.1		65	GND *1	1013		11:		6965	↓
16	CAP2+	-5301.1		66	TEST1	1147		110		7212.15	-876
17	CAP2+	-5201.1		67	TEST2	1301		11			-816
18	CAP2+	-5101.1		68	CLS	1455		118			-756
19	CAP4+	-4967.1		69	CL	1609		119			-696
20	CAP4+	-4867.1		70	DUMMY	1763		120			-636
21	CAP4+	-4767.1	1 1 1	71	DUMMY	1875		12			-576
22	CAP3-	-4633.1	1 1 1	72	DUMMY	1987		12			-516
23	CAP3-	-4533.1		73	VDDI	2141		123			-456
24	CAP3-	-4433.1		74	VDDI	2241		124			-396
25	CAP3+	-4299.1		75	VDDI	2341		12			-336
26	CAP3+	-4199.1		76	VDDI	2441		120			-276
27	CAP3+	-4099.1		77	VDD	2575		12			-216
28	V2	-3965.1		78	VDD	2675		128			-156
29	V2 V2	-3865.1		79	VDD	2775		129			-96
30	V2 V2	-3765.1	1 1 1	80	VDD	2875		130			-36
31	MV2	-3631.1		81	VDD	2975		13			24
32	MV2	-3531.1	1 1 1	82	VDD	3075		13			84
33	MV2	-3431.1		83	VIIN	3209		133			144
34	RES	-3297.1		84	VOUT	3309		134			204
35	RES	-3197.1		85	Vout	3409		13			264
36	RES	-3063.1		86	Vout	3509		130			324
37	CS										384
		-2909.1		87	V10UT	3643		13			
38	GND *1 WR	-2755.1	1 1 1	88	V ₁ OUT	3743		138			444
39		-2621.1		89	Vc	3877		139			504
40	RD	-2467.1		90	Vc	3977		140		▼	564
41	VDDI *1	-2313.1		91	VCOUT	4111		14		7228	836.5 I
42	A0	-2179		92	Vcout	4211		142		7186	
43	GND	-2025		93	V1IN	4345		143		7144	
44	GND	-1925	[94	V _{1IN}	4445		144		7102	
45	GND	-1825	[95	CAP1-	4579		14		7060	
46	GND	-1725		96	CAP1-	4679		140		7020	
47	GND	-1625		97	CAP1-	4779		14		6980	
48	GND	-1525		98	CAP1-	4879		148		6940	
49	D0	-1391	[99	CAP1+	5013		149		6900	
50	D1	-1237	↓ ↓	100	CAP1+	5113	♦	150	COM16	6860	

Unit: µm

		1			1				Unit: μm		
Pin No.	Pin Name	Х	Υ	Pin No.	Pin Name	X	Y	Pin No.	Pin Name	Х	Y
151	COM15	6820	836.5	201	SEG277	4820	836.5	251	SEG227	2820	836.5
152	COM14	6780		202	SEG276	4780		252	SEG226	2780	
153	COM13	6740		203	SEG275	4740		253	SEG225	2740	
154	COM12	6700		204	SEG274	4700		254	SEG224	2700	
155	COM11	6660		205	SEG273	4660		255	SEG223	2660	
156	COM10	6620		206	SEG272	4620		256	SEG222	2620	
157	COM9	6580		207	SEG271	4580		257	SEG221	2580	
158	COM8	6540		208	SEG270	4540		258	SEG220	2540	
159	COM7	6500		209	SEG269	4500		259	SEG219	2500	
160	COM6	6460		210	SEG268	4460		260	SEG218	2460	
161	COM5	6420		211	SEG267	4420		261	SEG217	2420	
162	COM4	6380		212	SEG266	4380		262	SEG216	2380	
163	COM3	6340		213	SEG265	4340		263	SEG215	2340	
164	COM2	6300		214	SEG264	4300		264	SEG214	2300	
165	COM1	6260		215	SEG263	4260		265	SEG213	2260	
166	SEG312	6220		216	SEG262	4220		266	SEG212	2220	
167	SEG311	6180		217	SEG261	4180		267	SEG211	2180	
168	SEG310	6140		218	SEG260	4140		268	SEG210	2140	
169	SEG309	6100		219	SEG259	4100		269	SEG209	2100	
170	SEG308	6060		220	SEG258	4060		270	SEG208	2060	
171	SEG307	6020		221	SEG257	4020		271	SEG207	2020	
172	SEG306	5980		222	SEG256	3980		272	SEG206	1980	
173	SEG305	5940		223	SEG255	3940		273	SEG205	1940	
174	SEG304	5900		224	SEG254	3900		274	SEG204	1900	
175	SEG303	5860		225	SEG253	3860		275	SEG203	1860	
176	SEG302	5820		226	SEG252	3820		276	SEG202	1820	
177	SEG301	5780		227	SEG251	3780		277	SEG201	1780	
178	SEG300	5740		228	SEG250	3740		278	SEG200	1740	
179	SEG299	5700		229	SEG249	3700		279	SEG199	1700	
180	SEG298	5660		230	SEG248	3660		280	SEG198	1660	
181	SEG297	5620		231	SEG247	3620		281	SEG197	1620	
182	SEG296	5580		232	SEG246	3580		282	SEG196	1580	
183	SEG295	5540		233	SEG245	3540		283	SEG195	1540	
184	SEG294	5500		234	SEG244	3500		284	SEG194	1500	
185	SEG293	5460		235	SEG243	3460		285	SEG193	1460	
186	SEG292	5420		236	SEG242	3420		286	SEG192	1420	
187	SEG291	5380		237	SEG241	3380		287	SEG191	1380	
188	SEG290	5340		238	SEG240	3340		288	SEG190	1340	
189	SEG289	5300		239	SEG239	3300		289	SEG189	1300	
190	SEG288	5260		240	SEG238	3260		290	SEG188	1260	
191	SEG287	5220		241	SEG237	3220		291	SEG187	1220	
192	SEG286	5180		242	SEG236	3180		292	SEG186	1180	
193	SEG285	5140		243	SEG235	3140		293	SEG185	1140	
194	SEG284	5100		244	SEG234	3100		294	SEG184	1100	
195	SEG283	5060		245	SEG233	3060		295	SEG183	1060	
196	SEG282	5020		246	SEG232	3020		296	SEG182	1020	
197	SEG281	4980		247	SEG231	2980		297	SEG181	980	
198	SEG280	4940		248	SEG230	2940		298	SEG180	940	
199	SEG279	4900		249	SEG229	2900		299	SEG179	900	
200	SEG278	4860	↓	250	SEG228	2860	↓	300	SEG178	860	↓

Unit: µm

	ı				I	1			1	Unit: μι		
Pin No.	Pin Name	Х	Υ	Pin No.	Pin Name	X	Υ	Pin No.	Pin Name	Х	Y	
301	SEG177	820	836.5	351	SEG127	-1180	836.5	401	SEG77	-3180	836.5	
302	SEG176	780		352	SEG126	-1220		402	SEG76	-3220		
303	SEG175	740		353	SEG125	-1260		403	SEG75	-3260		
304	SEG174	700		354	SEG124	-1300		404	SEG74	-3300		
305	SEG173	660		355	SEG123	-1340		405	SEG73	-3340		
306	SEG172	620		356	SEG122	-1380		406	SEG72	-3380		
307	SEG171	580		357	SEG121	-1420		407	SEG71	-3420		
308	SEG170	540		358	SEG120	-1460		408	SEG70	-3460		
309	SEG169	500		359	SEG119	-1500		409	SEG69	-3500		
310	SEG168	460		360	SEG118	-1540		410	SEG68	-3540		
311	SEG167	420		361	SEG117	-1580		411	SEG67	-3580		
312	SEG166	380		362	SEG116	-1620		412	SEG66	-3620		
313	SEG165	340		363	SEG115	-1660		413	SEG65	-3660		
314	SEG164	300		364	SEG114	-1700		414	SEG64	-3700		
315	SEG163	260		365	SEG113	-1740		415	SEG63	-3740		
316	SEG162	220		366	SEG112	-1780		416	SEG62	-3780		
317	SEG161	180		367	SEG111	-1820		417	SEG61	-3820		
318	SEG160	140		368	SEG110	-1860		418	SEG60	-3860		
319	SEG159	100		369	SEG109	-1900		419	SEG59	-3900		
320	SEG158	60		370	SEG108	-1940		420	SEG58	-3940		
321	SEG157	20		371	SEG107	-1980		421	SEG57	-3980		
322	SEG156	-20		372	SEG106	-2020		422	SEG56	-4020		
323	SEG155	-60		373	SEG105	-2060		423	SEG55	-4060		
324	SEG154	-100		374	SEG104	-2100		424	SEG54	-4100		
325	SEG153	-140		375	SEG103	-2140		425	SEG53	-4140		
326	SEG152	-180		376	SEG102	-2180		426	SEG52	-4180		
327	SEG151	-220		377	SEG101	-2220		427	SEG51	-4220		
328	SEG150	-260		378	SEG100	-2260		428	SEG50	-4260		
329	SEG149	-300		379	SEG99	-2300		429	SEG49	-4300		
330	SEG148	-340		380	SEG98	-2340		430	SEG48	-4340		
331	SEG147	-380		381	SEG97	-2380		431	SEG47	-4380		
332	SEG146	-420		382	SEG96	-2420		432	SEG46	-4420		
333	SEG145	-460		383	SEG95	-2460		433	SEG45	-4460		
334	SEG144	-500		384	SEG94	-2500		434	SEG44	-4500		
335	SEG143	-540		385	SEG93	-2540		435	SEG43	-4540		
336	SEG142	-580		386	SEG92	-2580		436	SEG42	-4580		
337	SEG141	-620		387	SEG91	-2620		437	SEG41	-4620		
338	SEG140	-660		388	SEG90	-2660		438	SEG40	-4660		
339	SEG139	-700		389	SEG89	-2700		439	SEG39	-4700		
340	SEG138	-740		390	SEG88	-2740		440	SEG38	-4740		
341	SEG137	-780		391	SEG87	-2780		441	SEG37	-4780		
342	SEG136	-820		392	SEG86	-2820		442	SEG36	-4820		
343	SEG135	-860		393	SEG85	-2860		443	SEG35	-4860		
344	SEG134	-900		394	SEG84	-2900		444	SEG34	-4900		
345	SEG133	-940		395	SEG83	-2940		445	SEG33	-4940		
346	SEG132	-980		396	SEG82	-2980		446	SEG32	-4980		
347	SEG131	-1020		397	SEG81	-3020		447	SEG31	-5020		
348	SEG130	-1060		398	SEG80	-3060		448	SEG30	-5060		
349	SEG129	-1100		399	SEG79	-3100		449	SEG29	-5100		
350	SEG128	-1140	\	400	SEG78	-3140	↓	450	SEG28	-5140	↓	

1.1.14	
Unit:	μM

Υ 836.5

564 504 444 384 324 264 204 144 84 24 -36 -96 -156 -216 -276 -336 -396 -456 -516 -576 -636 -696 -756 -816 -876

							Ur
Pin No.	Pin Name	Х	Y		Pin No.	Pin Name	Х
451	SEG27	-5180	836.5		501	DUMMY	-7186
452	SEG26	-5220			502	DUMMY	-7228
453	SEG25	-5260			503	DUMMY	-7212.15
454	SEG24	-5300			504	DUMMY	
455	SEG23	-5340			505	DUMMY	
456	SEG22	-5380			506	COM63	
457	SEG21	-5420			507	COM64	
458	SEG20	-5460			508	COM65	
459	SEG19	-5500			509	COM66	
460	SEG18	-5540			510	COM67	
461	SEG17	-5580			511	COM68	
462	SEG16	-5620			512	COM69	
463	SEG15	-5660			513	COM70	
464	SEG14	-5700			514	COM71	
465	SEG13	-5740			515	COM72	
466	SEG12	-5780			516	COM73	
467	SEG11	-5820			517	COM74	
468	SEG10	-5860			518	COM75	
469	SEG9	-5900			519	COM76	
470	SEG8	-5940			520	COM77	
471	SEG7	-5980			521	COM78	
472	SEG6	-6020			522	COM79	
473	SEG5	-6060			523	COM80	
474	SEG4	-6100			524	COM81	
475	SEG3	-6140			525	COM82	
476	SEG2	-6180			526	DUMMY	
477	SEG1	-6220			527	DUMMY	↓
478	COM42	-6260					·
479	COM43	-6300					
480	COM44	-6340					
481	COM45	-6380					
482	COM46	-6420					
483	COM47	-6460					
484	COM48	-6500					
485	COM49	-6540					
486	COM50	-6580					
487	COM51	-6620					
488	COM52	-6660					
489	COM53	-6700					
490	COM54	-6740					
491	COM55	-6780					
492	COM56	-6820					
493	COM57	-6860					
494	COM58	-6900					
495	COM59	-6940					
496	COM60	-6980					
497	COM61	-7020					
498	COM62	-7060					
499	DUMMY	-7102					
500	DUMMY	-7144	↓				
		1	_ •	ı			

^{*1 :} VDDI and GND Pins are for pulling up and down. Thus, it can't used for feeding power. *2 : DUMMY pins are not connected inside the IC.

6. SERIES SPECIFICATIONS

Model name	Die.No	Description
S1D15G14D01B000	D15GED1B	Malfunctions when rewriting the set value after resetting the
		DISCTL command.
S1D15G14D02B000	D15GED2B or D15GED2S	No application of the above restrictions

^{*} If considering purchasing our products, contact our sales for detailed information.

7. PIN DESCRIPTION

Power supply pins

Name	I/O	Description					
Vddi	Supply	Power supply for Interface circuit	7				
VDD	Supply	This is an internal operation power supply. Power supply connected to system Vcc.	8				
GND	Supply	This IC connected to the system GND.	11				
V2,V1,	Supply	Multi-level power supply for LCD drive.	10				
Vc,MV2		The voltages should maintain the following relationship:					
		V2>V1>VC>MV1=GND>MV2.					

LCD power supply circuit pins

Name	1/0	Description	Number of pins
CAP1+	0	Boosting capacitor connection pin which generates Vout from Vc.	4
CAP1-	0	Boosting capacitor connection pin which generates Vout from Vc.	4
Vout	0	Booster output.	3
CAP2+	0	Boosting capacitor connection pin which generates MV2 from Vc as V1IN.	3
CAP2-	0	Boosting capacitor connection pin which generates MV2 from Vc as V1IN.	3
CAP3+	0	Boosting capacitor connection pin which generates MV2 from Vc as V1IN.	3
CAP3-	0	Boosting capacitor connection pin which generates MV2 from Vc as V1IN.	3
CAP4+	0	Boosting capacitor connection pin which generates MV2 from Vc as V1IN.	3
CAP5+	0	Boosting capacitor connection pin which generates MV2 from Vc as V1IN.	3
CAP5-	0	Boosting capacitor connection pin which generates MV2 from Vc as V1IN.	3
CAP6+	0	Boosting capacitor connection pin which generates V2 from MV2 as Vc.	3
CAP6-	0	Boosting capacitor connection pin which generates V2 from MV2 as Vc.	3

LCD power supply control signal

Name	I/O	Description	Number of pins
VR	I	Connect external resister for LCD power supply circuit. This terminal is enabled by PWRCTL command. When internal resister is used, this terminal shouldn't be connected. When using a built-in resister, leave this pin open.	2
V _{1IN}	I	Input pin of LCD drive power supply.	3
V10UT	0	Output pin of LCD drive power supply.	2
Vсоит	0	Output pin of LCD drive power supply.	2

System bus connection bus

Name	I/O	Description	Number
D=(0.01.)		·	of pins
D7(SCL)	I/O	P/S=LOW: Serial clock input	1
		P/S=HIGH: Parallel data input / output data	
D6(SIO)	I/O	P/S=LOW: Serial data input	1
		P/S=HIGH : Parallel data input / output data	
D5	I/O		1
D4	I/O	Parallel data bus	1
D3	I/O	P/S=LOW : High impedance	1
D2	I/O	P/S=HIGH: Parallel data input / output data	1
D1	I/O		1
D0	I/O		1
P/S	I	Choose interface type	1
		P/S=LOW : Serial interface	
		P/S=HIGH : Parallel interface	
C86	- 1	Choose parallel interface type	1
		P/S=LOW: maintained HIGH or LOW	
		P/S=HIGH: HIGH: 80MPU interface, LOW: 68MPU interface	
S89	I	Choose serial interface type	1
		P/S=LOW: HIGH: 8bit serial interface, LOW: 9bit serial interface	
		P/S=HIGH: maintained HIGH or LOW	
A0	I	Determine whether the data bits are data or command	1
		P/S=LOW and S89=LOW: maintained HIGH or LOW	
		Except the above : HIGH: write parameter or display data, LOW: write command	
RD(E)	I	Parallell interface read signal	1
		P/S=LOW: maintained HIGH or LOW	
		P/S=HIGH : Parallel interface read signal	
		C86= HIGH : Inputs read signals.	
		C86= LOW : Inputs enable signals.	
WR (R/W)	I	Parallel interface write signal	1
		P/S=LOW : maintained HIGH or LOW	
		P/S=HIGH: Parallel interface write signal	
		C86= HIGH : Inputs write signals.	
		C86= LOW : Inputs read/write select signals.	
CS	I	Chip select input. Data input is enable when \overline{CS} is LOW.	1
RAMDIV	ı	Choose Display RAM area	1
	•	LOW: Page 0 to 83 are available	_
		HIGH: Page 0 to 66 are available	
			+

Display timing pins

Name	I/O	Description	Number of pins
CL	I	External clock input.	1
		When internal clock is used, this terminal should be maintained LOW or HIGH.	
CLS	I	Clock select pin	1
		CLS=LOW: External clock is used	
		CLS=HIGH: Internal clock from Built-in oscillator is used	

Test pins

Name	I/O	Description	Number of pins
TEST1	I	It is the test pin. This pin must be fixed at LOW.	1
TEST2	I	It is the test pin. This pin must be fixed at LOW.	1
TEST3	0	They are the test pins. Their pin must be OPEN.	6
to TEST6			

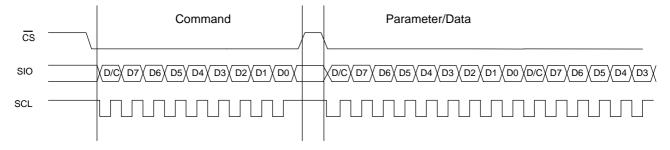
LCD Driver pins

Name	I/O	Description	Number of pins
SEG1	0	Segment output pin	312
to SEG312		Applicable pins are limited depending on setting of the DISCTL command. • When the command is set to 1/67 duty,	
		data displayed at the column addresses 0 to 97 are output to SEG10 to 303. Output to SEG1 to 9 and SEG304 to 312 become indefinite.	
		• When the command is set to 1/82 duty, data displayed at the column addresses 0 to 103 are output to SEG1 to 312.	
COM1	0	Common output pin	82
to COM82		Applicable pins are limited depending on setting of the DISCTL command. • When the command is set to 1/67 duty,	
		outputs to 67 pins of COM8 to 41 and COM50 to 82 become valid.	
		Outputs to COM1 to 7 and COM42 to 49 become indefinite.	
		• When the command is set to 1/82 duty,	
		all signals to COM1 and COM82 become valid.	

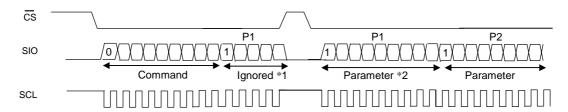
8. FUNCTIONAL DESCRIPTION

8.1 Serial Data Input

Commands and data are input and output in series. However ,the contents of the display RAM cannot be read. For the serial interface, the following two modes are available. These modes can be selected when the pin S89 is set to HIGH or LOW.


- ① 9-bit Interface
 - 3 pins of \overline{CS} , SCL and SIO are used. The data format becomes $\overline{D/C}$ (data/command identification bit) + 8 bits, or 9-bit unit.
- 2 8-bit Interface
 - 4 pins of $\overline{\text{CS}}$, SCL, SIO and A0 are used. The data format is a 8-bit one, and the data/command identification is made with levels of the A0 signal.

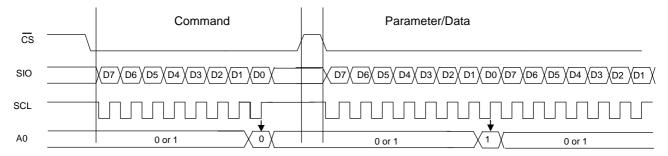
8.1.1 Serial Interface


Write Data Mode

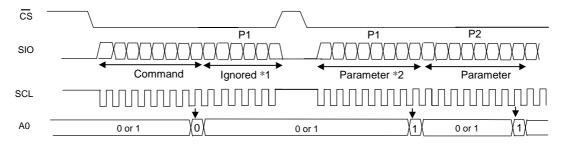
① In case of 9-bit Interface

When SCL rises after \overline{CS} changes to LOW, the data of SIO is taken in. Data are transmitted from the MPU to the SIO pin synchronously as SCL falls, and S1D15G14 takes in signals from the SIO pin as SCL rises. In addition to the D/C signal of data/command identification bit, 8-bit data is first transmitted as the most significant bit to the SIO pin. After the data transmission ends, set the \overline{CS} pin to the HIGH level. The following shows the timing charts.

Also, other timing charts show suspension of transfer after change of the \overline{CS} pin to HIGH during data transfer. When the command is sent, the \overline{CS} pin changes to HIGH while the parameter P1 is transferred and the transfer is suspended, the parameter P1 suspended halfway is not taken in S1D15G14. Then, set the \overline{CS} pin to LOW and resume the data transfer, and data to be received are recognized as those from P1.



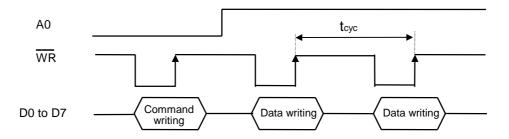
- *1 Shows that CS has changed to HIGH level during data transfer.
- *2 The suspended *1 is ignored, and Parameter *2 after resumption of transfer is recognized as Parameter 1.


② In case of 8-bit Interface,

When SCL rises after CS changes to LOW, the data of SIO is taken in. 8-bit data are transmitted from the MPU to the SIO pin first as the most significant bit synchronously as SCL falls, and S1D15G14 takes in signals from the SIO pin as SCL rises.

At the time, data/command identification is made at the A0 pin. After the data transmission, set the CS pin to the HIGH level.

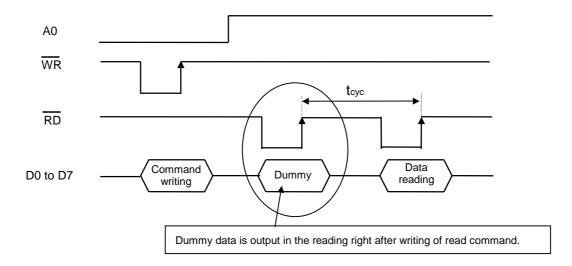
Also, other timing charts show suspension of transfer after change of the CS pin to HIGH during data transfer. When the command is sent, the \overline{CS} pin changes to HIGH while the parameter P1 is transferred and the transfer is suspended, the parameter P1 suspended halfway is not taken in S1D15G14. Then, set the \overline{CS} pin to LOW and resume the data transfer, and data to be received are recognized as those from P1.


- *1 Shows that \overline{CS} has changed to HIGH level during data transfer.
- *2 The suspended *1 is ignored, and Parameter *2 after resumption of transfer is recognized as Parameter 1.

8.2 Parallel Interface

When viewed from the MPU, S1D15G14 accesses the built-in display memory through the internal bus holder, and a high-speed data transfer, which requests no wait time, is possible. The write and read timing charts are as follows (and show examples of operation with the 80-series MPU interface).

8.2.1 In case of writing in S1D15G14 display memory from MPU


Display data are written following the memory write command.

8.2.2 In case of reading display memory data from S1D15G14

Data are read following the RAM data read command.

* The DDRAM read sequence is limited, and data at a specified address is not output (dummy read) in data reading right after the RAM data read command and is output at the time of second data reading.

8.3 Memory map

Memory maps are shown below. They are two memory maps from the level of the RAMDIV pin. For the detail, see 7.4, MPU Interface.

8.3.1 In Case of 1/67 duty

Condition: RAMDIV=HIGH, DISCTL command P31="0" Refer to the below figure for setup of the MADCTL command.

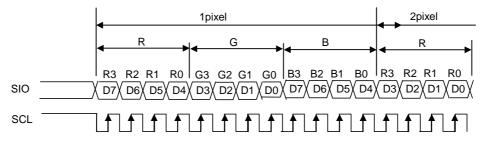
MADC	TL							Colu	ımn	addr	ess										
B6=1			97			96			95					2			1			0	
B6=0			0			1			2					95			96			97	
0	66																				
1	65																				
2	64																				
3	63																				
4	62																				
5	61																				
6	60																				
7	59																				
8	58																				
9	57																				
10	56																				
11 12	55 54																				
13	53																				
14	52																				
15	51																				
16	50																				
17	49																				
18	48																				
19	47																				
20	46																				
21	45																				
22	44																				
23	43										-										
24	42																				
25	41																				
26	40																				
27	39																				
28	38																				
29	37																				
30	36																				
31	35																				
32	34																				
33	33																				
34	32																				
35	31																				
36	30										<u> </u>										
37	29																				
38	28																				
39	27										<u> </u>										
40 41	26 25																				
41	25 24										_										
43	23																				
45																					
	l .		ı	ı	I	ı	ı	I	I	1	l				1	1					
				l		ı	l	l		l											
59	7																				
60	6					1															
61	5																				
61 62	4											-									
63	3																				
64	2					<u> </u>															
64 65	1																				
66	0																				
		က	2	_	0	6	æ	7	9	2			~	_	(C	10	+	~	<u></u>		
		SEG303	SEG302	SEG301	SEG300	SEG299	SEG298	SEG297	SEG296	SEG295			SEG18	SEG17	SEG16	SEG15	SEG14	SEG13	SEG12	SEG11	SEG10
1 `		EG	EG	<u>E</u>	EG	<u> </u>	<u> </u>	EG	<u>B</u>				E	EC	Ē	EG	EG.	Ē	Ē	EG	E
		S	S	S	S	S	S	S	S	S			S	S	တ	S	S	S	တ	S	တ

8.3.2 In case of 1/82 duty

Condition: RAMDIV=LOW, DISCTL Command P31="1" Refer to the below figure for setup of the MADCTL command.

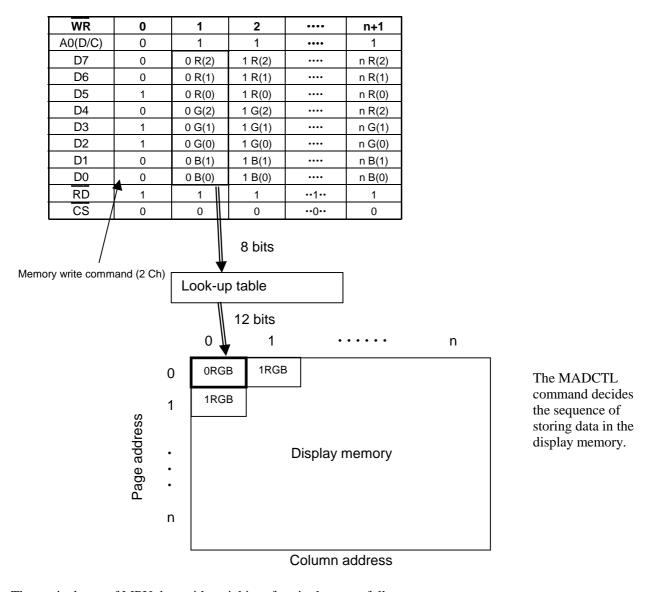
MADC	TL							Colu	ımn	addr	ess										
B6=1			103			102			101					2			1			0	
B6=0			0			1			2					101			102			103	
B7=0																1					
0	83																				
1	82																				
2	81																				
3	80											-		-							
<u>4</u> 5	79 78																				
6	77											-									
7	76										_										
8	75										_	-									
9	74																				
10	73																				
11	72																				
12	71																				
13	70																				
14	69																				
15	68																				
16	67																				
17	66																				
18 19	65 64																				
20	63										_										
21	62										_										
22	61										_	-									
23	60										_										
24	59											-									
25	58																				
26	57																				
27	56																				
28	55																				
29	54																				
30	53																				
31	52																				
32	51																				
33	50																				
34	49 48																				
35 36	48										_										
37	46											_									
38	45																				
39	44											_									
40	43																				
41	42																				
42	41																				
43	40																				
] ,	I		ı	ı	ı			ı		ı	ı		1		ı	ı					
												_									
76 77	7																				
77 78	5											_					\vdash				
79																	_				
80	ય ૧											_					\vdash				
80 81	2											-									
82	6 5 4 3 2																				
82 83	0																				
	-	2	_	0	6	8	7	9	2	4											
		SEG312	SEG311	SEG310	SEG309	SEG308	SEG307	SEG306	SEG305	SEG304			SEG9	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
]		8	<u> </u>	EG	<u> </u>	B	B	EG	<u>B</u>	EG			l E	崽	崽	说	Ü	Ü	흸	Ä	Щ.
		S	S	S	S	S	S	S	S	S							,		٠,	٠,	٠,

8.4 MPU Interface

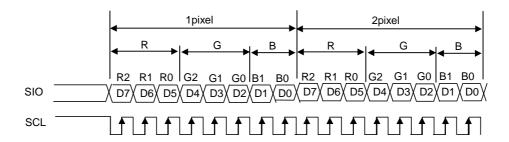

This paragraph explains relations between data that the MPU read in the display memory of S1D15G14 and data to be practically stored in the display memory.

8.4.1 444 Mode (Display in 4096 colors)

In this mode, data for 2RGB are written in the display memory when the MPU writes three times. Actually, the first two write signals write data for the first RGB in the display memory and the third write signal writes data for the 2nd RGB. When write signal is input only once, nothing is written in the display memory.


	WR	0	1	2	3	••••	3/2(n+1)	3/2(n+2)	3/2(n+3)
	A0(D/C)	0	1	1	1	••••	1	1	1
	D7	0	0 R(3)	0 B(3)	1 G(3)	••••	2n R(3)	2n B(3)	(2n+ 1) G(3)
	D6	0	0 R(2)	0 B(2)	1 G(2)	••••	2n R(2)	2n B(2)	(2n+ 1) G(2)
	D5	1	0 R(1)	0 B(1)	1 G(1)	••••	2n R(1)	2n B(1)	(2n+ 1) G(1)
	D4	0	0 R(0)	0 B(0)	1 G(0)	••••	2n R(0)	2n B(0)	(2n+ 1) G(0)
	D3	1	0 G(3)	1 R(3)	1 B(3)	••••	2n G(3)	(2n+ 1) R(3)	(2n+ 1) B(3)
	D2	1	0 G(2)	1 R(2)	1 B(2)	••••	2n G(2)	(2n+ 1) R(2)	(2n+ 1) B(2)
	D1	0	0 G(1)	1 R(1)	1 B(1)	••••	2n G(1)	(2n+ 1) R(1)	(2n+ 1) B(1)
	D0	0	0 G(0)	1 R(0)	1 B(0)	••••	2n G(0)	(2n+ 1) R(0)	(2n+ 1) B(0)
	RD	1	1	1	1	••1••	1	1	1
	CS	0	0	0	0	••0••	0	0	0
Me	mory write co	mmand (2 C	ch)	√o	1	••••	•••	า	
			0	0RGB	1RGB				
			_ω 1	1RGB					The MADCTL ommand decides
		- - -	Page address	S	ne sequence of toring data in the isplay memory.				
					Col	lumn addre	ess		

The equivalence of MPU data with serial interface is shown as follows:

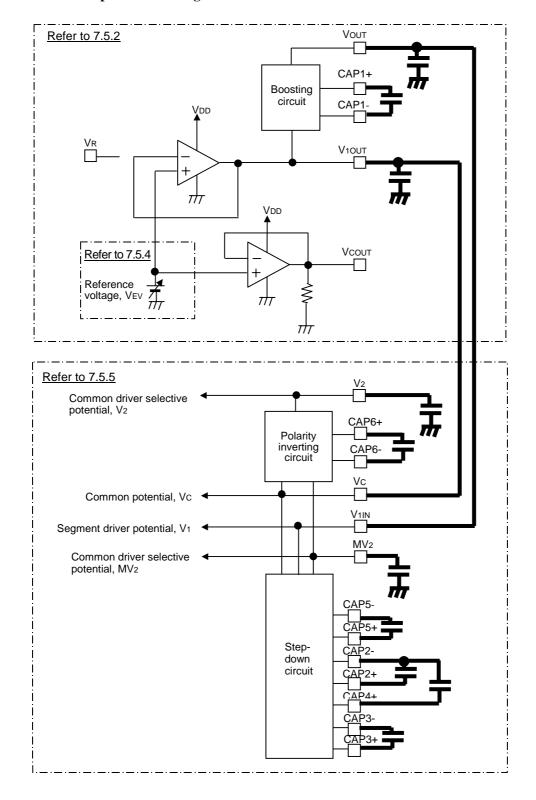


8.4.2 332 Mode (Display in 256 colors)

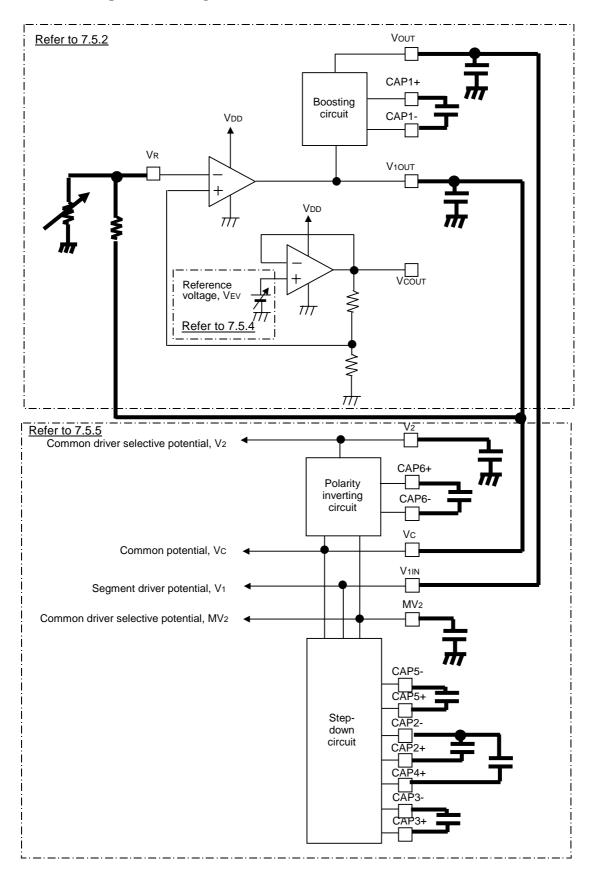
In this mode, data for 1RGB are written when the MPU writes once. Display data written in 8 bits are converted into 12-bit data on the look-up table to be set by the RGBSET command and are stored in the display memory.

The equivalence of MPU data with serial interface is shown as follows:

8.5 LCD Drive Power Supply Circuit

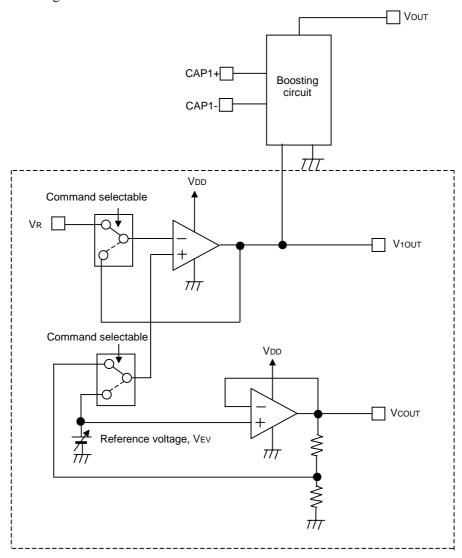

The S1D15G14 has a built-in power supply circuit that generates voltage necessary for driving the LCD.

8.5.1 Power Supply Block


The pin connections for the S1D15G14 built-in power supply blocks are shown below.

① When internal resistance is used (to adjust the LCD voltage with electronic volume)

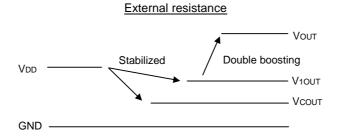
Note that the external parts and wirings are indicated in boldface.



② When external resistance is used (to adjust the LCD voltage with the external variable resister) **Note that the external parts and wirings are indicated in boldface.**

8.5.2 Power Supply Block (Reference voltage circuit/voltage follower)

The reference voltage circuit and the voltage follower generate on/off polarity for the segment driver and central polarity for the segment common driver.

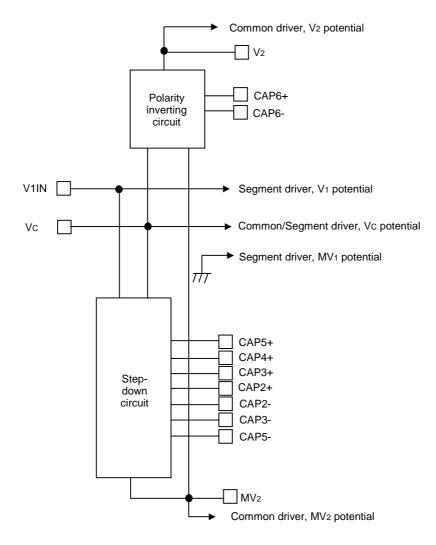


When selecting external resistance (P14=1) by the power control command

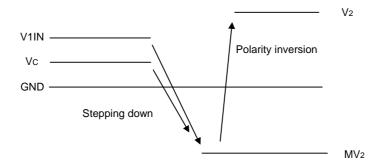
When selecting internal resistance (P14=0) by the power control command

V10UT, VCOUT and VOUT are generated by the VDD polarity. The potential relations of the internal and external resistances are as follows.

VDD Stabilized Double boosting V10UT and VCOUT GND



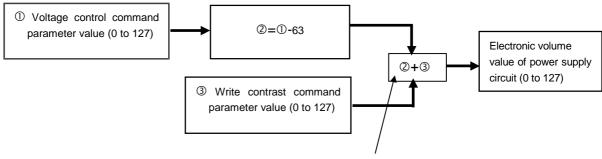
The following table describes the relationship between the external wire connection and LCD driving voltage.


	Internal r	esistance	External resistance			
Pin name	Wire connection	LCD driving voltage	Wire connection	LCD driving voltage		
Vouт	Connected to V1IN	Segment V ₁	Connected to V1IN	Segment V ₁		
V ₁ OUT	Connected to Vc	Vc	Connected to Vc	Vc		
VCOUT	Open	_	Open	_		

8.5.3 Power Supply Block 2 (Step-down circuit and polarity inverting circuit)

The step-down circuit and the polarity inverting circuit generate selective potential of the common driver.

V2/MV2 is generated from the pin input voltage, V1IN/Vc. The potential relations are as follows:


Also, to change the LCD drive bias, change the step count (= connection of external capacitor) of the MV2 step-down circuit.

8.5.4 Reference Voltage Circuit

S1D15G14 generates the LCD drive reference voltage, VEV, from VDD, converts it into impedance with the OP amplifier and outputs it to V10UT.

① Electronic Volume Function

The VEV voltage is variable by a command (Write contrast or Voltage control) and can be adjusted to the optimum value in the software. Setting of the two commands is reflected to operation of the power supply circuit as shown below:

When the result is below 0 or more than 127, the output is fixed to 0 or 127.

These two commands are used for the following purposes.

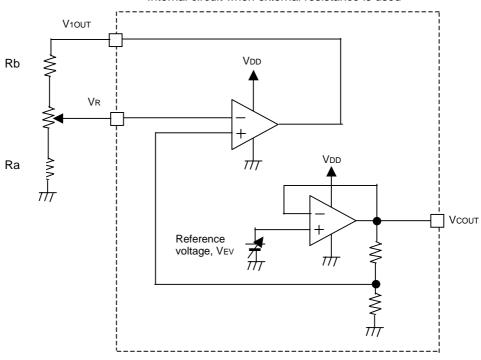
- ① Voltage control command: used to compensate variations of the LCD panel and the IC.
- ② Write contrast command: used to adjust the display contrast.

VEV can be expressed by the following formula:

$$V_{10UT} = V_{EV} = \left(\frac{89 + \alpha}{218}\right) \times V_{REG}$$

 α = (Voltage Control parameter value) - 63 + (Write Contrast parameter value)

The relations of $0 \le \alpha \le 127$ always exist. Even when the calculation result of the above formula is below 0 or more than 127, the value a is fixed to 0 or 127.


Where, VREG is the reference voltage inside the IC and is 1.8V (Typ.) when $T_a = 25$ °C. Also, the value a ranges from 0 to 127 and VREG is 1.8V (Typ.), and therefore, VEV is variable between 0.73V and 1.80V.

Please be careful for the set-up value not to exceed operation voltage.

② External Resister

When the external trimming resister is used to adjust the LCD drive voltage finely, connect the external resisters as follows. Also, in this case, set Parameter P14 to "1" by the Power Control command and select the external resisters.

In this case, the output voltage V_{10UT} is calculated by the following formula. (In the calculation, the resistance value of the variable resister was set to 0.)

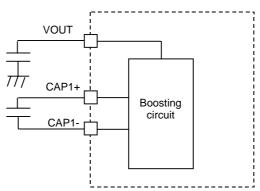
$$V_{10UT} = \frac{Ra + Rb}{Ra} \times \frac{V_{EV}}{2}$$

3 Temperature Gradient

Also, the command (Temperature gradient set) can be used to change the temperature gradient of VREG. The display quality can be corrected and retained in wide temperature ranges by selecting temperature gradients suitable to temperature characteristics of the LCD panel.

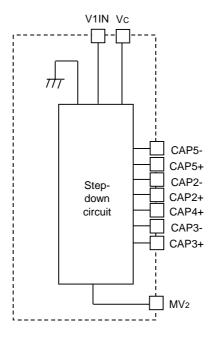
Temperature gradients can be selected from the following four kinds: Respective temperature gradient values are for refer only.

The intersection of the temperature gradient is 25 °C.

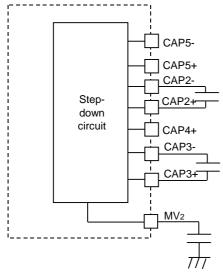

Parai	meter	Average temperature gradient (%/°C)						
0	0	-0.05						
0	1	-0.1						
1	0	-0.15						
1	1	-0.2						

8.5.5 Boosting Circuit, Step-down Circuit and Polarity Inverting Circuit

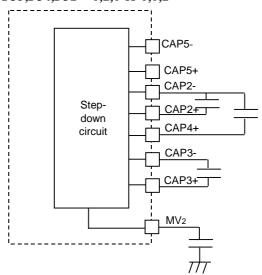
The boosting circuit, the step-down circuit and the polarity inverting circuit, for which the capacitor charge pump circuit is used, generates voltages of the LCD drive.


① Boosting Circuit

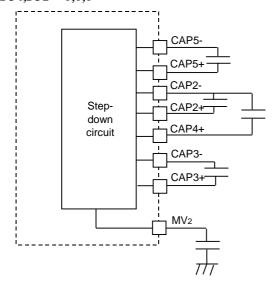
This circuit doubles the voltage between V10UT and GND, outputs it to V0UT and generates ON/OFF potentials of the segment driver. Connect a capacitor each between CAP1+ and CAP1- and between V0UT and GND.


② Step-down Circuit

This circuit reduces the voltages between V_{1IN}/V_C and GND to 1/4.5 at most, outputs it to MV₂ and generates selective potentials of the common driver. To change the reduction rate, connect an external capacitor and set the bias rate with the parameters P35 to P33 of the Display Control command.

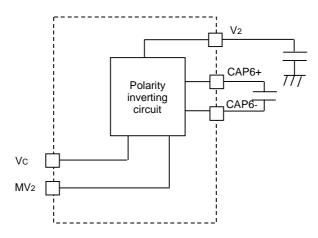


The following shows how to connect external parts.


In case of 1/5 bias or 1/6 bias P35,P34,P31 = 1,0,0 or 0,1,1

In case of 1/7 bias or 1/8 bias P35,P34,P31 = 0,1,0 or 0,0,1

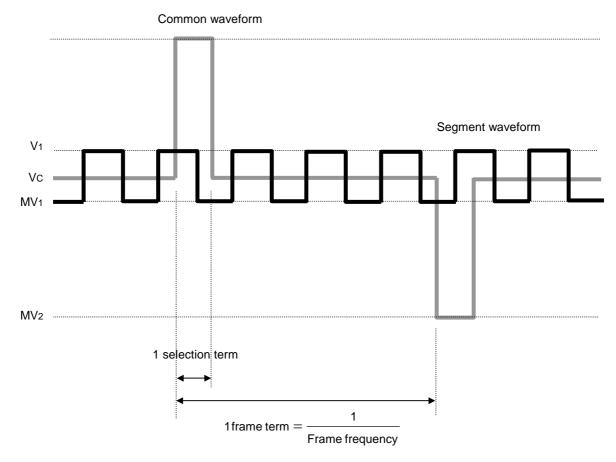
In case of 1/9 bias P35,P34,P31 = 0,0,0



Note)

If software bias setting and above external circuit are unmatched, this IC doesn't work correctly. (example)In case of combination using 1/9bias external circuit and 1/6 bias register setting. → this IC doesn't work correctly.

3 Polarity Inverting Circuit


This circuit inverts the polarity of the voltage between V_C and MV₂, outputs it to V₂ and generates selective potentials of the common driver. Connect a capacitor each between CAP6+ and CAP6- and between V₂ and GND.

8.6 LCD Drive Circuit

8.6.1 Driving Method

S1D15G14 drives the LCD panel by the principle driving method. The following shows the command and the segment drive waveforms.

There are two methods for setting 1 selection term to be used for the normal and idle modes of display status, respectively.

(1) Normal mode

Set with Parameter 1 of the Display Control command.

1Selection term =
$$\frac{1}{\text{fosc1}} \times (\text{Clock count of Parameter 1})$$

(2) Idle mode

Dividing ratio is set with the Parameter 3 (P37) of the display control command (DISCTL).

$$1Selection term = \frac{1}{fosc_2} \div (Dividing ratio)$$

One frame term depends on setting of the above Parameter 1 of the Display Control command and setting of duties of Parameters 3 to 5.

1 frame term =
$$(1 \text{ selection term}) \times (\text{Display duty})$$

8.6.2 LCD Drive Bias

The LCD drive bias rate in a principle drive is calculated from the following formula:

Bias rate =
$$\sqrt{\text{Drive duty}} + 1$$

When the LCD is driven according to this formula, the rate of ON voltage to OFF voltage becomes the maximum.

Since S1D15G14 allows to select the LCD drive bias out of 1/5 to 1/9 bias, select the optimum drive bias taking characteristics of applicable LCD and the number of external parts into account. The smaller the bias rate is set, the more the number of external parts reduces and the smaller the rate of ON voltage to OFF voltage of LCD drive becomes.

The following shows the formula to calculate common and segment amplitudes from Duty, Bias and LCD threshold (Vth):

① Segment Amplitude (VSEG)

$$\frac{\text{VSEG}}{2} = \frac{\text{Vth}}{\sqrt{1 + \frac{\text{Bias}^2 - 4 \times \text{Bias} + 3}{\text{Duty}}}}$$

Note: Set Vseg to 3.6V or less.

② Common Amplitude (VCOM)

$$\frac{\text{VCOM}}{2} = (\text{BIAS} - 1) \times \frac{\text{VSEG}}{2}$$

8.7 Display Mode

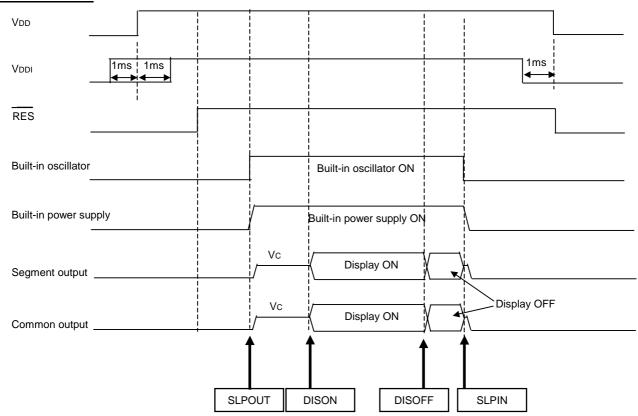
For S1D15G14, two display modes, i.e., Normal Mode and Idle Mode, are available depending on setting of commands. Respective operations are shown in the table below:

Item	Normal Mode	Idle Mode
LCD system operation	Oscillator 1	Oscillator 2
Oscillator 1 (Typ. 840kHz)	Operation	Stop
Oscillator 2 (Typ. 13kHz)	Stop	Operation
Number of displayable colors	4,096 colors	8 colors

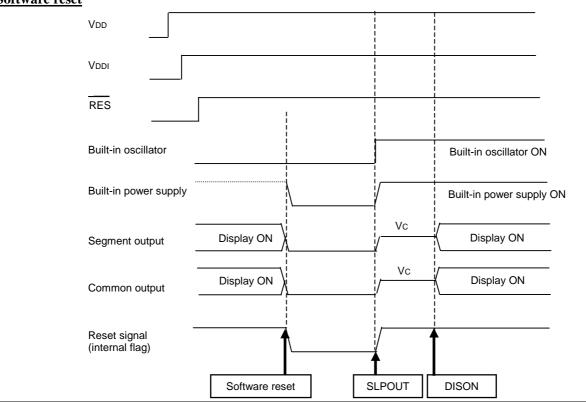
Each mode can be set or cancelled by the Normal Display ON, Idle Mode ON/OFF commands.

Normal Mode:

Circuits of the LCD system operate regarding output of Oscillator 1 as the reference clock and can be displayed in 4,096 colors.


Idle Mode:

Circuits of the LCD system operate regarding output of Oscillator 1 as the reference clock, and their display colors are reduced to 8 colors. The most significant bit of each color of RGB is used for display out of data in the display RAM. In this mode, the display color is limited to 8 colors, but these circuits can operate with low power consumption because the operation frequency is reduced.


8.8 ON/OFF, reset sequence

The following figures show the reset sequence and the status when the power is ON/OFF, and when software reset is done.

Hardware reset

Software reset

9. COMMANDS

9.1 Command table

No	HEX	Command name	Number of parameters	Status after reset *1	Status reading *2 O: Available X: Not available		
1	00	NOP	<u> </u>	_	×		
2	01	Software reset	_	_	×		
3	02	Booster voltage OFF	_	Built-in power	0		
4	03	Booster voltage ON	<u> </u>	supply OFF	0		
5	04	TEST mode	<u> </u>	<u> </u>	X		
6	09	Read display status	_	Default value	×		
7	10	Sleep in	_	Sleep in	0		
8	11	Sleep out	_	,	0		
9	12	Partial display mode ON	_	OFF	0		
10	13	Display normal mode ON	isplay normal mode ON — ON		0		
				(Normal display)			
11	20	Inversion OFF	<u> </u>	OFF	0		
12	21	Inversion ON	<u> </u>	(Normal display)	0		
13	22	All pixel OFF	 	OFF	0		
14	23	All pixel ON	_	(Normal display)	0		
15	25	Write contrast	1	Default value	×		
16	28	Display OFF	_	Display OFF	0		
17	29	Display ON	_		0		
18	2A	Column address set	2	Default value	X		
19	2B	Page address set	2	Default value	×		
20	2C	Memory write	Write data	_	×		
21	2D	Colour set	20	Indeterminate	×		
22	2E	RAM data read — —			X		
23	30	Partial area	2	Default value	×		
24	33			Default value	X		
25	34	TEST mode	<u> </u>	—	×		
26	35	TEST mode	_	_	×		
27	36	Memory access control	1	Default value	0		
28	37	Vertical scrolling start address	1	Default value	0		
29	38	Idle mode OFF	<u> </u>	Idle mode OFF	0		
30	39	Idle mode ON	<u> </u>	1	0		
31	3A	Interface pixel format	1	Default value	0		
32	DE	TEST mode	<u> </u>	_	×		
33	AA	NOP2	<u> </u>	_	×		
34	C6	Initial escape	<u> </u>	_	×		
35	DA	TEST mode	<u> </u>	_	×		
36	DB	TEST mode	<u> </u>	_	X		
37	DC	TEST mode	<u> </u>	_	X		
38	B2	TEST mode	1	_	X		
39	B3	Gray scale position set 0	15	Indeterminate	X		
40	B4	Gray scale position set 1	15	Indeterminate	×		
41	B5	Gamma curve set	1	Default value	0		
42	B6			Indeterminate	0		
43	B7	Temperature gradient set	14	Indeterminate	×		
44	B8	TEST mode	T =	_	×		
45	B9	Refresh set	1	Indeterminate	×		
46	BA	Voltage control	2	Indeterminate	×		
47	BD	Common driver output select	1	Indeterminate	×		
48	BE	Power control	1	Indeterminate	X		

^{*1:} Indicates the status of each command after reset.

Default value: The default value for each command in the after-reset status is set.

See the detailed description of commands, for the status.

Indeterminate: The status is indeterminate that must be cancelled by initialization.

^{*2:} Indicates the commands that the Read display status command (09h) can read the status.

O: The command execution status and all or a part of parameters that are set can be read.

^{×:} The status cannot be read.

9.2 Command process time and notes

No.	HEX	Command name	Command e			equired for I process *2	Restrictions
1			Immediately	V-Sync		Frame number	
1	00	NOP	0		1	_	
2	01	Software reset	0	_	1	_	Apply a waiting time of 5ms after execution.
3	02	Booster voltage OFF	0	_	1	_	
4	03	Booster voltage ON	0	_	1	_	Apply a waiting time of more than 30ms until execution of the DISON command.
5	04	TEST mode	_	_	_	_	
6	09	Read display status	0	_	1	_	
7	10	Sleep in	O Display OFF	O Display ON	1 Display OFF	Maximum of 1 Display ON	
8	11	Sleep out	O Display OFF	O Display ON	1 Display OFF	Maximum of 1 Display ON	
9	12	Partial display mode ON		0	_	Maximum of 1	
10	13	Display normal mode ON	_	0	_	Maximum of 1	
11	20	Inversion OFF	_	0	_	Maximum of 1	
12	21	Inversion ON	_	0	_	Maximum of 1	
13	22	All pixel OFF	_	0	_	Maximum of 1	
14	23	All pixel ON	_	0		Maximum of 1	
15	25	Write contrast	0		1		
16	28	Display OFF		0	_	Maximum of 1	
17	29	Display ON	_	0		Maximum of 1	
18	2A	Column address set	0	_	1	—	
19	2B	Page address set	0		1	_	
20	2C	Memory write	0		1	_	
21	2D	Colour set	0		1	_	
22	2E	RAM data read	0	_	1	_	
23	30	Partial area	0		1		
24	33	Vertical scrolling definition	0	_	1	<u> </u>	
25	34	TEST mode			<u> </u>		
	35		<u> </u>		_	_	
26		TEST mode				_	
27	36	Memory access control	0		1	_	
28	37	Vertical scrolling start address	0	_	1	_	
29	38	Idle mode OFF	_	0	_	*3	Waiting time *3 is required
30	39	Idle mode ON	_	0	_		for sequential execution.
31	3A	Interface pixel format	0	_	1		
32	DE	TEST mode	_	_	_	_	
33	AA	NOP2	0	_	1	_	
34	C6	Initial escape	0	_	1	_	
35	DA	TEST mode		_	_	_	
36	DB	TEST mode	_	_	_	_	
37	DC	TEST mode	_	_	_	1	
38	B2	TEST mode					
39	B3	Gray scale position set 0	0		1		
40	B4	Gray scale position set 1	0	_	1		
41	B5	Gamma curve set	0	=	1		
42	B6	Display control	0	_	1	_	
43	B7	Temperature gradient set	0	_	1	_	
44	B8	TEST mode		<u> </u>	_	_	
45	B9	Refresh set	0	<u> </u>	1	_	
46	BA	Voltage control	0	_	1	_	
47	BD	Common driver output select	0	_	1	_	
48	BE	Power control	0	_	1	_	
<u> </u>				1	· · · · · · · · · · · · · · · · · · ·		1

*1: Displays when the input command or parameter is executed.

Immediately: Executes upon writing of command and parameter.

In case of 80-series parallel interface: Rising time of signal WR

In case of serial interface: Rising time of SCL signal that received the least significant bit (D0).

V-Sync: Executes in sync with the frame next to the frame into which the command or the parameter is written.

*2: Displays the time the input command requires for processing.

MPU cycle: Executes upon writing and processed within the MPU cycle time.

Frame number: Executes in sync with the displayed frame and processed within the time required for the number of frames.

The frame time is displayed in the display mode (normal/idle mode) upon input of the command.

*3: Displays each process time for idle mode ON/OFF.

Idle mode ON:

- ① (1 frame in idle mode) + (1 frame in normal mode)
- ② 1/ (fosc2/ (division rate*3))* (number of GCP in normal mode during 1H-period)

Apply time required for processing $\mathbb{O} + \mathbb{O}$.

Idle mode OFF:

Apply time required for processing (1 frame in idle mode) + (1 frame in normal mode).

* Apply the above processing time when turning the idle mode ON/OFF.

9.3 Details of Commands

(1) No Operation (NOP)

This is Non-Operation Command ①.

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	0	0	0	0	0	0	0	0	00

This command enables to end the read/write sequence of the display memory. This command can escape from test mode, so that it is recommended to input this command periodically.

(2) Software Reset (SWRESET)

This is Software Reset Command. Use this command to reset the inside.

l	D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
	0	0	0	0	0	0	0	0	1	01

This command works in the same way as the function of Hardware Reset by setting LOW to the \overline{RES} pins.

(3) Booster Voltage OFF (BSTOFF)

This is Built-in Power Off Command.

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	0	0	0	0	0	0	1	0	02

When this command is executed, the LCD drive power supply circuit is turned OFF.

Sleep in/out Command can also turn OFF/ON the LCD drive power supply circuit, but this command turns OFF the LCD drive power supply circuit independently.

The following command enables to get out of the status set by this command.

Exit commands	HEX
Booster voltage ON	03

^{*} After reset is done, the Booster Voltage ON/OFF status is OFF.

(4) Booster voltage ON (BSTON)

This is Power Supply ON Command.

ĺ	D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
ĺ	0	0	0	0	0	0	0	1	1	03

When this command is executed, the LCD drive power supply circuit is turned ON.

Sleep in/out Command can also turn ON/OFF the LCD drive power supply circuit, but this command turns ON the LCD drive power supply circuit independently.

(5) TEST mode

This is IC Test Mode Command.

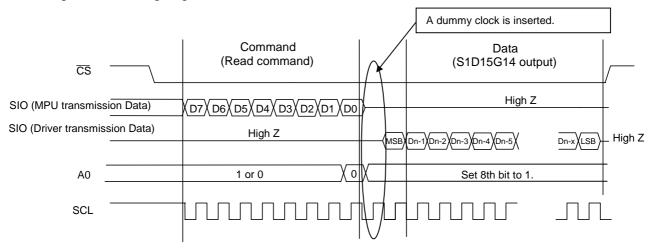
D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	0	0	0	0	0	1	0	0	04

^{*} After reset is done, the Booster Voltage ON/OFF status is OFF.

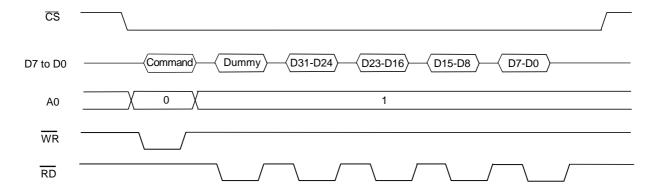
(6) Read display status (RDDST)

This command is for reading statuses of the IC.

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	0	0	0	0	1	0	0	1	09


After this command is input, 32-bit data are read that show statuses of the IC.

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	0	0	0	0	1	0	0	1	09
1	DD								
1	D31	D30	D29	D28	D27	D26	D25	D24	XX
1	D23	D22	D21	D20	D19	D18	D17	D16	XX
1	D15	D14	D13	D12	D11	D10	D9	D8	XX
1	D7	D6	D5	D4	D3	D2	D1	D0	XX


DD: Dummy data

Data to be read first after the command is input becomes a dummy data.

The $\overline{\text{CS}}$ pin must be at the LOW level until execution of this command reads the 4th byte status. Maintain the timing in the following diagram.

For 8-bit interface

80 series parallel interface

Details of D0 to D31

Bit	Descriptions
31	Booster voltage status
30	Page address order
29	Column address order
28	Page/column order
27	Line address order
26	RGB/BGR order
25	0 is set all the time.
24	0 is set all the time.
23	Switching between com outputs and RAM
22	Interface color pixel format definition
21	
20	
19	Idle mode ON/OFF
18	Partial mode ON/OFF
17	Sleep in/out
16	Display normal mode
15	Vertical scrolling ON/OFF
14	0 is set all the time.
13	Inversion ON/OFF
12	All pixels ON
11	All pixels OFF
10	Display ON/OFF
9	Indefinite
<u>8</u> 7	Gamma curve selection
6 5	0 is set all the time.
4	0 is set all the time.
3	0 is set all the time.
2	0 is set all the time.
1	0 is set all the time.
0	0 is set all the time.
U	U is set all the time.

B31 is for booster voltage status:

shows operating statuses of the built-in power supply circuit.

- 1: The built-in power supply circuit is turned ON.
- 0: The built-in power supply circuit is turned OFF.
- "0" is returned in the sleep status.

B30 is for page address order (serial interface \rightarrow display driver).

shows the page address order when display data is written.

- 0 : Access from the top address to the bottom address.
- 1 : Access from the bottom address to the top address.

B29 is for column address order (serial interface \rightarrow display driver).

shows the column address order when display data is written.

- 0 : Access from the top address to the bottom address.
- 1 : Access from the bottom address to the top address.

B28 is for page/column block selection (serial interface \rightarrow display driver).

shows that display data is written in any direction of the page/column direction.

- 0: Write in the page direction
- 1: Write in the column direction.

B27 is for Common scanning direction.

shows in which direction the common driver is scanned.

- 0 : Scanning from the top to the bottom.
- 1 : Scanning from the bottom to the top.

B26 is for RGB - BGR order (MPU \rightarrow Driver).

shows the RGB-BGR order in writing display data in the display RAM.

0 : RGB 1 : BGR

B25: 0 is read all the time.

B24: 0 is read all the time.

B23 is for switching between RAM and common outputs (RAM \rightarrow common outputs).

shows the relations between common address and common output.

0: Normal

1: Vertical reverse

B22, B21, B20: Interface color pixel format definition.

shows settled statuses of the interface color pixel format.

Format	B22	B21	B20
Not defined	0	0	0
Not defined	0	0	1
8 bit/pixel	0	1	0
12 bit/pixel	0	1	1
Not defined	1	0	0
Not defined	1	0	1
Not defined	1	1	0
Not defined	1	1	1

B19 is for idle mode.

shows if the idle mode is ON.

0: The Idle Mode is OFF. (Normal mode)

1: The Idle Mode is ON. (Reduced color mode)

B18 is for partial mode.

shows if the partial mode is ON.

0: The Partial Mode is OFF.

1: The Partial Mode is ON.

B17 is for "Sleep in/out".

shows if the sleep-in status is ON.

0: Sleep-in status

1 : Sleep-out status

B16 is for "Display normal mode".

shows if the normal mode is ON.

0: The Normal Mode is OFF.

1: The Normal Mode is ON.

B15 is for Vertival scroll mode.

shows ON/OFF status of the vertical scroll.

0: Vertical scroll is OFF.

1: Vertical scroll is ON.

B14: 0 is read all the time.

B13 is for inversion ON/OFF.

shows if the screen is normal/inverted.

0: The screen is normal.

1: The screen is inverted.

B12 is for all pixels ON.

shows if all pixels are ON.

0: Normal status

1 : All screens are ON.

B11 is for all pixels OFF.

shows if all pixels are OFF.

0: Normal status.

1: All screens are OFF.

B10 is for display ON/OFF.

shows if display is ON or OFF.

0: Display is OFF.

1: Display is ON.

B9: Becomes indefinite.

Gamma curve selection (B8, B7, B6).

shows which register is selected out of the two-gradation setting.

GAMMA CURVE SELECTION	B8	B7	B6
GCP0 is selected	0	0	0
GCP1 is selected	0	0	1
not defined	0	1	0
not defined	0	1	1
not defined	1	0	0
not defined	1	0	1
not defined	1	1	0
not defined	1	1	1

The default value after reset

Bit	Descriptions	Default value	Status
31	Booster voltage status	0	Built-in power supply OFF
30	Page address order	0	Top to Bottom
29	Column address order	0	Top to Bottom
28	Page/column order	0	Column direction
27	Line address order	0	Top to Bottom
26	RGB/BGR order	0	RGB
25	0 is set all the time.	0	_
24	0 is set all the time.	0	_
23	Switching between com outputs and RAM	0	Normal mode
22	Interface color pixel format definition	0	12bit/pixel
21		1	
20		1	
19	Idle mode ON/OFF	0	Normal mode
18	Partial mode ON/OFF	0	No partial
17	Sleep in/out	0	Sleep-in
16	Display normal mode	1	Normal mode
15	Vertical scrolling ON/OFF	0	Scrolling OFF
14	0 is set all the time.	0	_
13	Inversion ON/OFF	0	Display normal (no inversion)
12	All pixels ON	0	Normal
11	All pixels OFF	0	Normal
10	Display ON/OFF	0	Display OFF
9	Indefinite	Indefinite	_
8	Gamma curve selection	0	GCP0
7		0	
6		0	
5	0 is set all the time.	0	_
4	0 is set all the time.	0	_
3	0 is set all the time.	0	_
2	0 is set all the time.	0	_
1	0 is set all the time.	0	
0	0 is set all the time.	0	

(7) Sleep in (SLPIN)

This command is sued to set the IC to the sleep status.

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	0	0	0	1	0	0	0	0	10

When this command is input, all LCD driver output pins are set to the VC level and the LCD drive power supply circuit and the built-in oscillator are turned OFF. Since the LCD drive power supply circuit is OFF, all LCD driver output pins come to the GND level and to the still status. The display ON/OFF status before input of this command determines how this circuit gets in the sleep status.

When the display is ON:

the circuit gets in the sleep status in the time of 2 to 3 frames after the command is input.

When the display is OFF:

the circuit gets in the sleep status right after the command is input.

The following command enables to get out of the status set by this command.

Exit commands	HEX
Sleep out	11

^{*} After reset is done, the Sleep in/out status is IN.

(8) Sleep out (SLPOUT)

This command cancels sleep status of this IC.

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	0	0	0	1	0	0	0	1	11

The display ON/OFF status before input of this command determines how this circuit gets out of the sleep status.

When the display is ON:

the display is turned on in the time of 3 frames after this command is input.

When the display is OFF:

input the display ON command 40ms or more later after inputting the sleep out command.

(9) Partial mode ON (PTLON)

When this command is input, the partial display is turned ON.

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
I	0	0	0	0	1	0	0	1	0	12

The following command enables to get out of the status set by this command.

Exit commands	HEX
Normal display mode ON	13

Use the Partial Area command to set partial areas.

For common/segment driver output, the display OFF level is output in other than the partial display area irrespective of gradation setting. Also, this command does not allow accessing the display RAM.

(10) Normal display mode ON (NORON)

This command is for setting the normal display status.

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	0	0	0	1	0	0	1	1	13

^{*} After reset is done, the Normal display mode status is ON.

^{*} After reset is done, the Sleep in/out status is IN.

^{*} After reset is done, the Normal display mode status is ON.

(11) Display Inversion OFF

This command is for making display normal.

The normal display status means that the effective value of voltage applied to the LCD becomes the maximum when the RAM data is "1111." Also, this command is executed without changing the display memory.

I	D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
I	0	0	0	1	0	0	0	0	0	20

^{*} After reset is done, the Display inversion status is OFF.

(12) Display Inversion ON

This command is for inverting display.

The inverted display status means that the effective value of voltage applied to the LCD becomes the maximum when the RAM data is "0000." Also, this command is executed without changing the display memory.

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	0	0	0	0	0	1	0	1	21

The following command enables to get out of the status set by this command.

Exit commands	HEX
Display inversion OFF	20

^{*} After reset is done, the Display inversion status is OFF.

(13) All pixels OFF

This command is for turning OFF all LCD displays.

The display on status means that the effective value of voltage applied to LCD becomes the maximum.

After this command is executed, the access to the RAM stops, and the LCD driver output is fixed to the OFF level irrespective of gradation pulse setting.

Also, this command is executed irrespective of status of the display memory.

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	0	0	1	0	0	0	1	0	22

The following command enables to get out of the status set by this command.

Exit commands	HEX			
Partial mode ON	12			
Normal display mode ON	13			

^{*} After reset is done, the All pixel status is OFF and Display OFF status.

(14) All pixels ON

This command is for turning on all LCD displays.

The display ON status means that the effective value of voltage applied to LCD becomes the maximum.

After this command is executed, the access to the RAM stops, and the LCD driver output is fixed to the on level irrespective of gradation pulse setting.

Also, this command is executed irrespective of status of the display memory.

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	0	0	1	0	0	0	1	1	23

The following command enables to get out of the status set by this command.

Exit commands	HEX
Normal display mode ON	13
Partial mode ON	12

^{*} After reset is done, the All pixel status is OFF and Display OFF status.

(15) Write contrast (WRCNTR)

This command is for setting contrast of the LCD display.

Execution of this command changes the LCD drive voltage output to segment/common driver.

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	0	0	1	0	0	1	0	1	25

Parameter to be input after this command sets contrasts.

D/	C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
1		P7	P6	P5	P4	P3	P2	P1	P0	XX

These parameter values are for setting 0 to 127. (Set "0" for P7.)

The center value is 63, and the LCD drive voltage rise when the parameter is set large and the voltage reduces when the parameter is set small.

* All default values for P7 to P0 after resetting are 63.

(16) Display OFF

This command is for turning OFF the LCD display.

When this command is input, the access to the RAM stops and the driver output changes as follows:

Segment: OFF level is output irrespective of RAM data and gradation setting.

Common: The same as the display on status.

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	0	0	1	0	1	0	0	0	28

The following command enables to get out of the status set by this command.

Exit commands	HEX
display ON	29

^{*} After reset is done, the Display status is OFF.

(17) Display on

This command is for turning on the LCD display.

When this command is input, the display corresponding to the display RAM data and display setting is output to the LCD driver.

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	0	0	1	0	1	0	0	1	29

^{*} After reset is done, the Display status is OFF.

(18) Column address set (CASET)

This command is for setting column addresses.

When display data is transferred from the MPU to the display RAM, this command is used to set a write area. In case of column address scanning, addresses are incremented from the start address to the end address and the page address is increased by 1, then, the column address returns to the start column. When executing this command, set the start column and the end column at the same time so that the start column becomes smaller than the end column.

Also, if the column address is set outside the display RAM area, data writing outside the area is ignored and correct data is not read in reading data.

I	D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
I	0	0	0	1	0	1	0	1	0	2A

Set the 8-bit start column address and the 8-bit end column address according to parameters to be input after this command.

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	0	0	1	0	1	0	1	0	2A
1	SC7	SC6	SC5	SC4	SC3	SC2	SC1	SC0	XX
1	EC7	EC6	EC5	EC4	EC3	EC2	EC1	EC0	XX

^{*} Default values after reset are as follows.

SC7 to SC0: 0

EC7 to EC0: 103 (RAMDIV pin=LOW), 97 (RAMDIV pin=HIGH)

(19) Page address set (PASET)

This command is for setting page addresses.

When display data is transferred from the MPU to the display RAM, this command is used to set a write area. In case of page address scanning, addresses are incremented from the start address to the end address and the column address is increased by 1, then, the page address returns to the start page. When executing this command, set the start page and the end page at the same time so that the start page becomes smaller than the end page.

Also, if the page address is set outside the display RAM area, data writing outside the area is ignored and correct data is not read in reading data.

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	0	0	1	0	1	0	1	1	2B

Set the 8-bit start page address and the 8-bit end page address according to parameters to be input after this command.

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	0	0	1	0	1	0	1	1	2B
1	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	XX
1	EP7	EP6	EP5	EP4	EP3	EP2	EP1	EP0	XX

^{*} Default values after reset are as follows.

SP7 to SP0: 0

EP7 to EP0: 83 (RAMDIV pin=LOW), 66 (RAMDIV pin=HIGH)

(20) Memory write (RAMWR)

This command is for writing data in the display RAM.

When this command is input, the page address and the column address turn into the start address. When data is written in the display RAM, the column address or the page address is increased by 1. When any other command is input, this IC gets out of the status set by this command.

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	0	0	1	0	1	1	0	0	2C

After inputting this command, you can write display data.

Sequence to write in the display RAM

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	0	0	1	0	1	1	0	0	2C
1	D7	D6	D5	D4	D3	D2	D1	D0	XX
1	D7	D6	D5	D4	D3	D2	D1	D0	XX
					•				
•									
1	D7	D6	D5	D4	D3	D2	D1	D0	XX
1	D7	D6	D5	D4	D3	D2	D1	D0	XX

The following command enables to get out of the status set by this command.

Exit commands	HEX
Any other command	XX

S1D15G14 Series

(21) Colour set (RGBSET)

This command is for setting the look-up table of display colors.

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	0	0	1	0	1	1	0	1	2D

Display information is set according to parameters to be input after this command. The look-up table is used when the 256-color mode is set by the interface color pixel format command.

After selecting 256 colors (8 bits: RRRGGGBB) from 4096 colors (12 bits: RRRRGGGBBBB), use them as follows:

RED

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX	INDEX
0	0	0	1	0	1	1	0	1	2D	_
1	Х	Х	Х	Х	R3	R2	R1	R0	XX	0
1	Х	Х	Х	Х	R3	R2	R1	R0	XX	1
1	Х	Х	Х	Х	R3	R2	R1	R0	XX	2
1	Х	Х	Х	Х	R3	R2	R1	R0	XX	3
1	Х	Х	Х	Х	R3	R2	R1	R0	XX	4
1	Х	Х	Х	Х	R3	R2	R1	R0	XX	5
1	Х	Х	Х	Х	R3	R2	R1	R0	XX	6
1	Х	Х	Х	Х	R3	R2	R1	R0	XX	7

GREEN

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX	INDEX
1	Х	Х	Х	Х	G3	G2	G1	G0	XX	0
1	Х	Х	Х	Х	G3	G2	G1	GO	XX	1
1	Х	Х	Х	Х	G3	G2	G1	G0	XX	2
1	Х	Х	Х	Х	G3	G2	G1	G0	XX	3
1	Х	Х	Х	Х	G3	G2	G1	G	XX	4
1	Х	Х	Х	Х	G3	G2	G1	GO	XX	5
1	Х	Х	Х	Х	G3	G2	G1	GO	XX	6
1	Х	Х	Х	Х	G3	G2	G1	G0	XX	7

BLUE

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX	INDEX
1	Х	Х	Х	Х	В3	B2	B1	B0	XX	0
1	Х	Х	Х	Х	В3	B2	B1	B0	XX	1
1	Х	Х	Х	Х	В3	B2	B1	B0	XX	2
1	Х	Х	Х	Х	В3	B2	B1	B0	XX	3

^{*} After reset is done, values in the look-up table become unstable. Perform initialization.

(22) RAM data read

This command is for reading data from the display RAM.

After this command is input, the read status becomes available. Also, when this command is input, the page address and the column address are always set to the start address. When any data is read after this command, the contents of the display data RAM can be read, and the page address or the column address is incremented at the same time. When any command is input, the data reading is automatically cancelled.

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	0	0	1	0	0	1	1	1	2E

Execute this command as per the following procedures;

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	0	0	1	0	0	1	1	1	2E
1	RD	XX							

RD: Display RAM data

(23) Partial area (PLTAR)

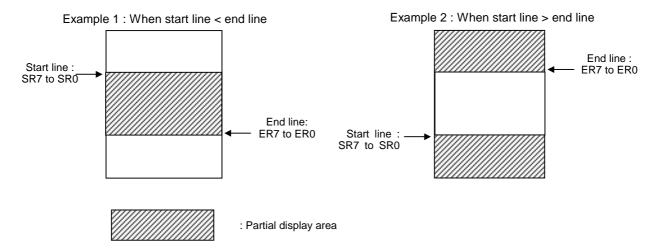
This command is for setting display areas at the time of partial display.

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	0	0	1	1	0	0	0	0	30

The areas are set according to two parameters to be input after this command.

This command is set as follows:

- 1. Input the command.
- 2. Set the start line (8 bits).
- 3. Set the end line (8 bits).


D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	0	0	1	1	0	0	0	0	30
1	SR7	SR6	SR5	SR4	SR3	SR2	SR1	SR0	XX
1	ER7	ER6	ER5	ER4	ER3	ER2	ER1	ER0	XX

S1D15G14 turns into the following status in partial non-display area:

Driver output: Display OFF is output irrespective of RAM data and gradient setting.

RAM access: None

The following shows setting examples of display area:

^{*} Default values after reset are as follows.

SR7 to SR0: 0 ER7 to ER0: 0 (24) Vertical scrolling definition (VSCRDEF)

This command is for setting vertical scrolling areas.

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	0	0	1	1	0	0	1	1	33

Scrolling areas are set according to three parameters to be input after this command. This command is executed as follows:

- 1. Input the command.
- 2. Set the number of lines (TF7 to TF0) to be used as the upper fix area of display in the display memory. When all parameters are 0, the upper fix area does not exist.
- 3. Set the number of lines (SA7 to SA0) to be used as the scrolling area in the display memory.
- 4. Set the number of lines (BF7 to BF0) to be used as the lower fix area of display in the display memory. When all parameters are 0, the lower fix area does not exist.

The input sequence is as follows:

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	0	0	1	1	0	0	1	1	33
1	TF7	TF6	TF5	TF4	TF3	TF2	TF1	TF0	XX
1	SA7	SA6	SA5	SA4	SA3	SA2	SA1	SA0	XX
1	BF7	BF6	BF5	BF4	BF3	BF2	BF1	BF0	XX

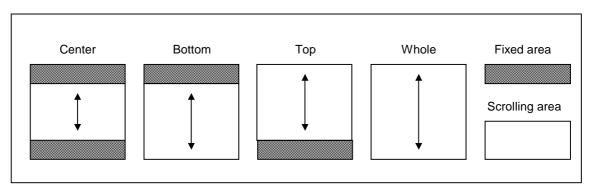


Fig. 1 Display Scroll Mode

Note: The top fixed area changes according to B4 bit of the memory access control command.

* Default values after reset are as follows.

TF7 to TF0: 0 SA7 to SA0: 0 BF7 to BF0: 53H

(25) TEST mode

This command is for testing IC chips.

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	0	0	1	1	0	1	0	0	34

(26) TEST mode

This command is for testing IC chips.

I	D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
I	0	0	0	1	1	0	1	0	1	35

(27) Memory access control (MADCTL)

This command is for setting the method that the MPU accesses the display memory.

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	0	0	1	1	0	1	1	0	36

This command is executed as follows:

- 1. Input the command.
- 2. Set the memory access direction.

The input sequence is as follows:

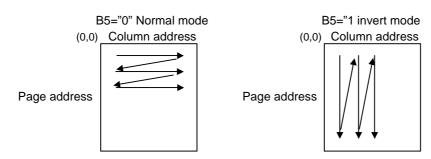
D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	0	0	1	1	0	1	1	0	36
1	B7	B6	B5	B4	В3	0	0	B0	XX

B7: To set the position of Page 0 in the display RAM.

0: To be arranged in line from the top to the bottom.

1: To be arranged in line from the bottom to the top.

B6: To set the position of Column 0 in the display RAM.


0: To be arranged in line from left to right.

1: To be arranged in line from right to left.

B5: To set the page/column direction in writing in the display RAM. This setting is used for screen rotation.

0: To be written in the column direction in the normal mode.

1: To be written in the page direction in the inverting mode.

B4: To set the scanning direction of the common driver.

0: To be scanned from the top to the bottom.

1: To be scanned from the bottom to the top.

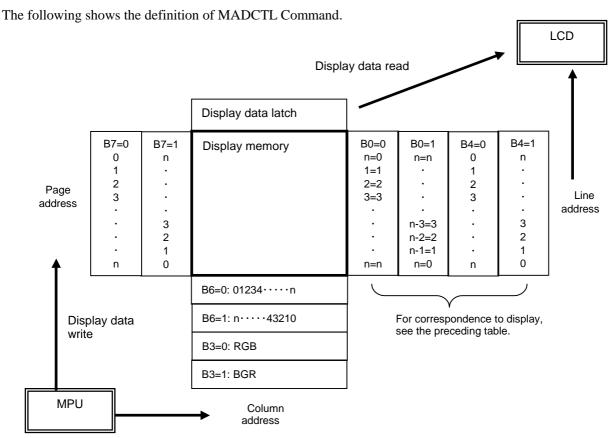
B3: To set the RGB to BGR sequence.

To set the RGB to BGR sequence in writing from the MPU to the display RAM.

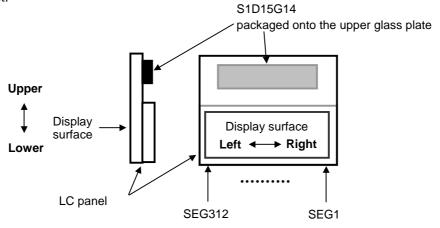
0 : RGB

1 : BGR

B0: To set relations between the display RAM and the common output.


The screen is vertically inverted by setting the display RAM read sequence by this command.

0: Normal


1: Vertical inversion

Combination of B4 and B0 (Function of S1D15G14)

B4	В0	Display RAM read sequence	Common scanning direction	Display state
0	0	$Top \to Bottom$	$Top \to Bottom$	Normal
0	1	$Bottom \to Top$	$Top \to Bottom$	Vertical inversion
1	0	$Bottom \to Top$	$Bottom \to Top$	Normal
1	1	$Top \to Bottom$	$Bottom \to Top$	Vertical inversion

Also, in this command description, the display of head, tail, left and right is defined under the condition where the driver is mounted to the liquid crystal panel as shown below and the DISCTL command (B6h)'s parameter P32="0" is set.

* Default values after reset are as follows.

B7: From top to bottom

B6: From left to right

B5: Normal mode

B4: From top to bottom

B3: RGB

B0: Normal

(Note)

Parameter P32 of the DISCTL command defines the top and bottom values of this command.

(28) Vertical scrolling start address (VSCRSADD)

This command is for setting scrolling start addresses.

I	D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
I	0	0	0	1	1	0	1	1	1	37

Note: This command is input at the time of vertical scrolling. The set vertical scrolling addresses become valid from the next frame of the display.

The vertical scrolling start address is set according to one parameter to be input after this command. The address in the display RAM to be shown by this start address is the top of the scrolling area in the display area. This command is executed as follows:

- 1. Input this command.
- 2. Set the display RAM start address 8 bits.

The input sequence is as follows:

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	0	0	1	1	0	1	1	1	37
1	SA7	SA6	SA5	SA4	SA3	SA2	SA1	SA0	XX

Note: Positions of top fixed area, scrolling area and bottom fixed area are changed according to B4 bit of the memory access control command (MADCTL).

The displayed position turns 180 degrees when "1" is set to B4 bit.

The following command enables to get out of the status set by this command.

Exit commands	HEX
Normal display mode ON	13
Partial mode ON	12

^{*} Default values after reset are as follows.

SA7 to SA0: 0

(29) Idle mode OFF (IDMOFF)

This command is used to cancel the idle mode of this IC.

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	0	0	1	1	1	0	0	0	38

^{*} After reset is done, the idle mode status is OFF.

(30) Idle mode ON (IDMON)

This command is used to select the idle mode.

The idle mode is used to display in reduced number of colors (8-color display). In case of display in reduced number of colors, the most significant bit out of 4 bits each of RGB in the display RAM is used for display data. Other bits exert no influence on display.

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	0	0	1	1	1	0	0	1	39

^{*} After reset is done, the idle mode status is OFF.

(31) Interface pixel format (COLMOD)

This command is for setting the pixel format when the MPU writes data in the display RAM.

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	0	0	1	1	1	0	1	0	3A

The format is set according to one parameter to be input after this command.

This command is executed as follows:

- 1. Input this command.
- 2. Set the pixel format.

The input sequence is as follows:

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	0	0	1	1	1	0	1	0	3A
1	Χ	Χ	Χ	Χ	Χ	P2	P1	P0	XX

x: Bits to be ignored. Either of "0" and "1" will do.

Interface Formats	P2	P1	P0
Not defined	0	0	0
Not defined	0	0	1
8 bit/pixel	0	1	0
12 bit/pixel	0	1	1
Not defined	1	0	0
Not defined	1	0	1
Not defined	1	1	0
Not defined	1	1	1

When 8-bit/pixel = 256-color display is selected, data transmitted from the MPU are converted in the look-up table and are written in the display RAM.

P2, P1, P0: 0, 1, 1 12 bits/pixel is selected.

^{*} Default values after reset are as follows.

(32) TEST mode (TSTMOD)

This command is used to test the IC.

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	1	1	0	1	1	1	1	0	DE

When this command is input, the IC gets into the test mode and comes not to accept other commands. If this command is input due to noise or other reason, the NOP command or NOP2 enables to get out of the test mode. When the IC enters the test mode, the display indications may become incorrect. In this case, the following phenomena may occur.

- The selective polarity is outputted for more than one of the common pins.
- The LCD reference voltage's temperature gradient changes.
- · Oscillation stops.
- The normal oscillation frequency and reference voltage values change.

(33) Nop Operation 2(NOP2)

This is Non-operation command ②.

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	1	0	1	0	1	0	1	0	AA

This command does not affect other operations.

(34) Initial escape

This command is for initialization of settings inside the IC.

Input this command in the order shown in the example of software setup.

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	1	1	0	0	0	1	1	0	C6

(35) TEST mode

This command is for testing IC chips.

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	1	1	0	1	1	0	1	0	DA

(36) TEST mode

This command is for testing IC chips.

ĺ	D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
ĺ	0	1	1	0	1	1	0	1	1	DB

(37) TEST mode

This command is for testing IC chips.

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	1	1	0	1	1	1	0	0	DC

(38) TEST mode

This command is for testing IC chips.

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	1	0	1	1	0	0	1	0	B2

(39),(40) Gray scale position set (GCPSET0, GCPSET1)

These commands are for setting gray scale positions.

Since this IC is provided with two series of registers, these commands GCPSET0 and GCPSET1 are used to set them.

GCPSET0 Command

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	1	0	1	1	0	0	1	1	B3

GCPSET1 Command

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	1	0	1	1	0	1	0	0	B4

These commands are executed as follows:

GCPSET0

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	1	0	1	1	0	0	1	1	B3
1	P17	P16	P15	P14	P13	P12	P11	P10	XX
1	P27	P26	P25	P24	P23	P22	P21	P20	XX
\downarrow	↓	\downarrow	XX						
1	P157	P156	P155	P154	P153	P152	P151	P150	XX

GCPSET1

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	1	0	1	1	0	1	0	0	B4
1	P17	P16	P15	P14	P13	P12	P11	P10	XX
1	P27	P26	P25	P24	P23	P22	P21	P20	XX
\downarrow	↓	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	↓	↓	XX
1	P157	P156	P155	P154	P153	P152	P151	P150	XX

P17 to P10 : GCP1 : Gray level to be output when the RAM data is "0001."

P27 to P20: GCP2: Gray level to be output when the RAM data is "0010."

•

P157 to P150: GCP15: Gray level to be output when the RAM data is "1111."

Note:

- 1. Set this register before executing Sleep Out Command. Do not change it during display.
- 2. Select any setting area from 2 to (Clock count in 1 section term to be set at P1 of DISCTL).
- 3. Be sure to observe the following relations:

GCP1<GCP2 · · · < GCP15

- 4. Outputs at the time of RAM data = "0000" are fixed.
- * After reset is done, values of registers become unstable. Perform initialization.

(41) Gamma Curve set (GAMSET)

This command is for setting selection of two GCP registers.

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	1	0	1	1	0	1	0	1	B5

This command is executed as follows:

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	1	0	1	1	0	1	0	1	B5
1	*	*	*	*	*	*	P11	P10	XX

P10, P11 : Selects the GCP register.

0 : GCPSET0 is selected. 1 : GCPSET1 is selected.

P11	P10	GCP register
0	0	The previous status is preserved.
0	1	GCP0 is selected.
1	0	GCP1 is selected.
1	1	The previous status is preserved.

^{*} After reset is done, values of registers become P11, P10=0,1.

(42) Display control (DISCTL)

This command is for setting displays.

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	1	0	1	1	0	1	1	0	B6

This command is executed as follows:

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	1	0	1	1	0	0	1	0	B6
1	P17	P16	P15	P14	P13	P12	P11	P10	XX
1	P27	P26	P25	P24	P23	P22	P21	P20	XX
1	P37	*	P35	P34	P33	P32	P31	P30	XX
1	*	P46	P45	P44	P43	P42	P41	P40	XX
1	*	P56	P55	P54	P53	P52	P51	P50	XX
1	*	P66	P65	P64	P63	P62	P61	P60	XX
1	P77	P76	P75	P74	P73	P72	P71	P70	XX

P17 to P10: To set the length of one selection term by the number of issues of the oscillation clock.

This value must be larger than those set by the GCPSET0 and GCPSET1 commands.

P27 to P20: To set N inversions.

P27 = 0: To execute N line inversion at the cycle set by P26 to P20.

1: No N line inversion

P26 to P20: To set the cycle of N line inversion.

The set value brings an inversion cycle. Set the value between 2 and 127.

P37: To set frame frequency in the idle mode.

0: No division from oscillation frequency

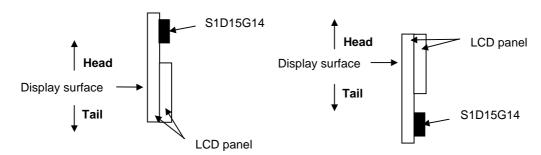
1:2 divisions of oscillation frequency

P35 to P33: To set bias rate of LCD drive voltage.

P2	P1	P0	Bias Rate
0	0	0	1/9
0	0	1	1/8
0	1	0	1/7
0	1	1	1/6
1	0	0	1/5

Note: This parameter value and external parts are changed according to bias rate.

P32: shows how the IC is installed on the panel.


0: IC is installed on top of the module.

1: IC is installed under the module.

The display's head and tail are determined by referencing this parameter.

Basically, P32 = "0" is recommended for use.

When installing the IC on top of the module (P32=0) When installing the IC under the module (P32=1)

P31: To set the column direction size of the RAM.

 $0:98\times67 \text{ or } 98\times84$

 $1:104\times67 \text{ or } 104\times84$

Note: The RAMDIV pin changes the page direction size.

P30: To set display duty.

0: 1/82 1: 1/67

P47 to P40, P67 to P60: To set duty in 1/82 duty.

Set P47 to P40 = 84 and P87 to P60 = 82.

According to this parameter setting, the display line is set to 82 and the actual drive duty is set to 84.

The 2 horizontal intervals, which is the difference between the display line and the drive duty, are required for operating the IC. Between the 2 horizontal intervals, the segment output will be in non-display output (off line interval).

(Note) Do not rewrite this parameter while it is displayed.

P57 to P50, P77 to P70: To set duty in 1/67 duty.

Set P57 to P50 = 69 and P77 to P70 = 67.

According to this parameter setting, the display line is set to 67 and the actual drive duty is set to 69.

The 2 horizontal intervals, which is the difference between the display line and the drive duty, are required for operating the IC. Between the 2 horizontal intervals, the segment output will be in non-display output (off line interval).

(Note) Do not rewrite this parameter while it is displayed.

* After reset is done, values of registers become unstable. Perform initialization.

This command is restricted as follows:

S1D15G14D01B000: Do not rewrite the set value after resetting the set value of this command.

This restriction is not applied in S1D15G14D02B000.

(43) Temperature gradient set(TMPGRD)

This command is for setting temperature gradients of LCD drive voltage.

I	D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
I	0	1	0	1	1	0	1	1	1	B7

This command is executed as per the following sequence:

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	1	0	1	1	0	1	1	1	B7
1	*	*	*	*	*	*	P11	P10	XX
1	P27	P26	P25	P24	P23	P22	P21	P20	XX
1	P37	P36	P35	P34	P33	P32	P31	P30	XX
1	P47	P46	P45	P44	P43	P42	P41	P40	XX
1	P57	P56	P55	P54	P53	P52	P51	P50	XX
1	P67	P66	P65	P64	P63	P62	P61	P60	XX
1	P77	P76	P75	P74	P73	P72	P71	P70	XX
1	P87	P86	P85	P84	P83	P82	P81	P80	XX
1	P97	P96	P95	P94	P93	P92	P91	P90	XX
1	P107	P106	P105	P104	P103	P102	P101	P100	XX
1	P117	P116	P115	P114	P113	P112	P111	P110	XX
1	P127	P127	P125	P124	P123	P122	P121	P120	XX
1	*	*	*	*	*	*	*	P130	XX
1	P147	P147	P145	P144	P143	P142	P141	P140	XX

P11 and P10: The average LCD driving voltage's temperature gradient shall be set as follows.

Please keep in mind are with tolerance in fact.

P11	P10	Average temperature gradient (%/°C)
0	0	-0.05
0	1	-0.1
1	0	-0.15
1	1	-0.2

P20 to P147: These are the parameter used for the IC test.

Always set P130 to "0". Other parameters should set to either "0" or "1".

* After reset is done, values of registers become unstable. Perform initialization.

(44) TEST mode

This command is for testing IC chips.

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	1	0	1	1	1	0	0	0	B8

(45) REFSET

Input this command to set up status in the IC.

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	1	0	1	1	1	0	0	1	B9

This command is executed in the following sequence.

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	1	0	1	1	1	1	0	1	В9
1	*	*	*	*	*	0	0	0	XX

After reset is done, values of registers become unstable. Perform initialization.

(46) Voltage control (VOLCTL)

This command is for adjusting LCD drive voltage.

ĺ	D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
ĺ	0	1	0	1	1	1	0	1	0	ВА

This command is executed as per the following sequence:

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	1	0	1	1	1	0	1	0	BA
1	*	P16	P15	P14	P13	P12	P11	P10	XX
1	*	*	*	*	*	*	P21	P20	XX

P16 to P10: To set the electronic volume value.

P21 and P20: Always set this parameter to "1."

^{*} After reset is done, values of registers become unstable. Perform initialization.

(47) Common driver output select(COMOUT)

This command is for setting operations of the common driver.

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	1	0	1	1	1	1	0	1	BD

This command is executed as per the following sequence:

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	1	0	1	1	1	1	0	1	BD
1	*	*	*	*	P13	P12	P11	P10	XX

P13: To set the top common for interlace drive.

0: The COM1 to COM41 side comes first.

1: The COM42 to COM82 side comes first.

Note: Be sure to set 0 in case of 1/67 duty.

P12: To set interlace drive/Normal drive.

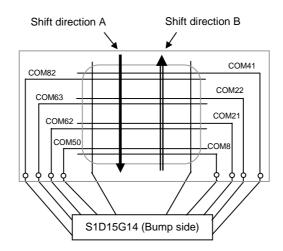
0: Normal drive

1: Interlace drive

The interlace drive means that common signals from the IC are arranged in comb shape on the LCD panel for driving.

P11, P10: To set shift direction of the common driver (output sequence of selection pulse).

① When the DISCTL command was used to set 1/67 duty: P13=0 (Be sure to set it to "0"), P12=1

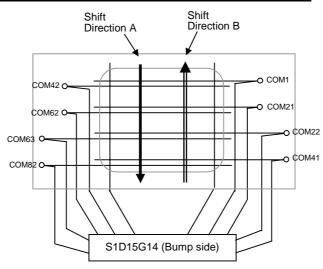

MADCTL Command B4=0 (Top \rightarrow Bottom)

P1'	1 P10	Order	Shift Direction
0	0	COM8,50 · · 62,21 → COM63,22 · · 82,41	В
1	1	COM41,82 · · 22,63 → COM21,62 · · 50,8	A

MADCTL Command B4=1 (Bottom \rightarrow Top)

Ì	P11	P10	Order	Shift Direction
	0	0	COM41,82 · · 22,63→COM21,62 · · 50,8	Α
	1	1	COM8,50 · · 62,21 → COM63,22 · · 82,41	В

Note: Do not use COM1 to COM7 for 1/67.

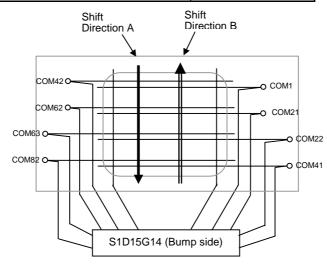

2 If 1/82 duty is set by the DISCTL command: P12=1

MADCTL command B4=0 (top→bottom)

P13	P11	P10	Order	Shift Direction
0	0	0	COM1,42··21,62→COM22,63··41,82	Α
0	1	1	COM82,41 · · 63,22 → COM62,21 · · 42,1	В

MADCTL command B4=1(bottom→top)

P13	P11	P10	Order	Shift Direction
1	0	0	COM82,41 · · 63,22 → COM62,21 · · 42,1	В
0	1	1	COM1,42 · · 21,62 → COM22,63 · · 41,82	A


P13=1, P12=1

MADCTL command B4=0 (top→bottom)

P13	P11	P10	Order	Shift Direction
0	0	0	COM42,1 · · 62,21 → COM63,22 · · 82,41	Α
1	1	1	COM41,82 · · 22,63→COM21,62 · · 1,42	В

MADCTL command B4=1(bottom→top)

P13	P11	P10	Order	Shift Direction
0	0	0	COM41,82 · · 22,63→COM21,62 · · 1,42	В
1	1	1	COM42,1 · · 62,21 → COM63,22 · · 82,41	А

(48) Power control (PWRCTL)

This command is for setting the power supply circuit.

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	1	0	1	1	1	1	1	0	BE

This command is executed as per the following sequence:

D/C	D7	D6	D5	D4	D3	D2	D1	D0	HEX
0	1	0	1	1	1	1	1	0	BE
1	*	P16	P15	P14	P13	P12	P11	P10	XX

P16: To set boosting clock's timing to normal mode.

- 0: To generate the boosting clock with a different timing than the display clock. Frequency of the boosting clock is set by P12, P11 and P10.
- 1: To generate the boosting clock with half a clock per selection period later than the display clock.

When the display or fluctuation of the LCD driving voltage, in sync with the display clock, is uneven, setting the parameter to "1" is recommended.

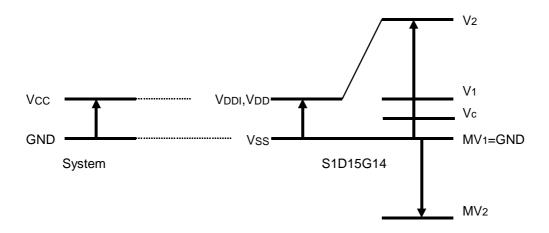
- P15: This parameter must be set to "0" for internal setting of the IC.
- P14: To switch internal/external resistance used for adjusting V10UT output voltage.
 - 0: Internal resistance
 - 1: External resistance
- P13: To change the output driving capacity of V10UT.
 - 0: High-power mode
 - 1: Low-power mode

Although setting this parameter to the high-power mode saves current consumption by approximately $100 \, \mu A$, voltage fluctuation may affect the image quality due to the load of the LCD panel. Hence, we recommend that the high-power mode be used.

P12, P11 and P10: To set the frequency of the built-in boosting circuit. The frequency is set by the oscillation clock's division rate.

As indicated below, the frequency varies by the difference between the normal and idle display modes.

P2	P1	P0	Norma	I mode	Idle mode		
0	0	0	fosc1/512	1.6kHz typ.	fosc2/48	0.8kHz typ.	
0	0	1	fosc1/256	3.3kHz	fosc2/24	1.6kHz	
0	1	0	fosc1/128	6.6kHz	fosc2/12	3.3kHz	
0	1	1	fosc1/64	13.1kHz	fosc2/6	6.5kHz	
1	0	0	fosc1/32	26.3kHz	fosc2/3	13kHz	


Despite load of the LCD panel, raising the boosting circuit's frequency makes the LCD driving voltage more stable. This increase, however, requires more current consumption. Adjust the value appropriately by checking the display of the LCD panel.

^{*}After reset is done, values of registers become unstable. Perform initialization.

10. ABSOLUTE MAXIMUM RATING

Unless otherwise noted, GND = 0V.

Parameter	Symbol	Conditions	Unit
Power supply voltage (1)	VDDI	-0.3 to +4.0	V
Power supply voltage (2)	VDD	-0.3 to +4.0	V
Power supply voltage (3)	V2	-0.3 to +16.0	V
Power supply voltage (4)	MV2	-11.0 to GND	V
Power supply voltage (5)	V1	-0.3 to VDD	V
Input voltage	Vin	-0.3 to VDDI+0.3	V
Output voltage	Vo	-0.3 to VDDI+0.3	V
Operating temperature	Topr	-40 to +85	°C
Storage temperature Bare chip	TSTR	-55 to +125	°C

Notes and Conditions

- 1. Voltage $V_1 \ge V_2 \ge GND$, $V_2 \ge GND \ge MV_2$ must always be satisfied.
- 2. If the LSI exceeds its absolute maximum rating, it may be damage permanently. It is desirable to use it under electrical characteristics conditions during general operation. Otherwise, a malfunction of the LSI may be caused and LSI reliability may be affected.

11. ELECTRIC CHARACTERISTICS

11.1 DC Characteristics

GND = 0V, $V_{DD} = 2.85V \pm 10\%$, $T_{a} = -40$ to +85°C unless otherwise noted.

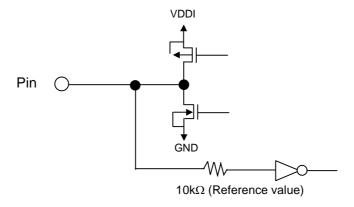
Item	Symbol	Condition	<u> </u>	Typ.	Max.	Unit	
Power supply voltage (1)	VDDI	Condition	1.6	1.8	VDD	V	VDDI
Power supply voltage (1)	VDDI	<u> </u>	2.35	2.8	3.6	V	VDDI
Power supply voltage (2)		V2 to MV2				V	
Power supply voltage (3)	V2	V2 to IVIV2	10		25	V	V2,MV2
an anational valtage	V2	-	5.0	_	15.0		V2
operational voltage	V ₁		1.8	_	3.6	V	V1
	Vc	-	0.9		1.8	V	Vc
	MV1		GND	_	GND	V	GND
	MV2	-	-10.5		-5	V	MV2
Reference voltage		Ta=25°C	1.75	1.8	1.85	V	
HIGH-level input voltage	ViH	_	$0.7 \times V$ ddi	_	Vddi	V	All input
LOW-level input voltage	VIL		Vss		$0.3 \times V$ DDI	V	
HIGH-level output voltage	Vон	IOH=-0.3mA	0.8×VDDI	_	Vdd	V	All
LOW-level output voltage	Vol	IOL=0.3mA	GND	_	0.2×VDDI	V	input/output, All output,
Input leakage current	Iц	_	-1.0	_	1.0	μА	All input, All input/output
Output leakage current	llo	_	-3.0		3.0	μА	All input/output, All output
LCD driver ON resistance (1)	V2Ron	V2=10.0V, Ta=25°C	_	500	3000	Ω	COMn
LCD driver ON resistance (2)	MV2 Ron	Vc=-7.0V, Ta=25°C	_	500	3000	Ω	COMn
LCD driver ON resistance (3)		V1=2.5V,Io= 0.1 mA Ta=25°C	_	500	1800	Ω	SEGn, V1,MV1
LCD driver ON resistance (4)		Vc=1.25V, Io= 0.1 mA Ta=25°C	_	400	2400	Ω	SEGn COMn
LCD power supply output impedance (1)	Vout	1/5 bias, C=1.0μF,	_	200	400	Ω	Vout
LCD power supply output impedance (2)	V2	Ta=25°C	_	2000	4000	Ω	V2
LCD power supply output impedance (3)	MV2		_	1500	3000	Ω	MV2
LCD power supply output impedance (4)	V10UT	Iout=±100μA, Ta=25°C	_	100	200	Ω	V10UT
Static current consumption	IDDQ	Ta=25°C		0.5	5	μΑ	Vddi, Vdd
	I2Q	V2=15.0V, Ta=25°C	_	0.1	1	μА	V2
	I1Q	V1=2.5V, Ta=25°C		0.5	5	μΑ	V2 V1
Operating current consumption (1)	IDD	1/6 bias,		400	600	μΑ	VI
Operating current consumption (1)		fr=85Hz, Vseg=3.3V,		1	10	μΑ	
	100	normal mode		F00	700	Α	
Operating current consumption (2)	IDD	MPU access under status (1).		500	700	μΑ	
	IDDI	tscyc=1.5MHz 4096 colors, 15 fps equivalent	_	10	20	μА	
Operating current consumption (3)	IDD	1/6 bias,	_	300	500	μΑ	
,	IDDI	frr=85Hz, Vseg=3.3V, idle mode	_	1	10	μA	
Oscillation frequency	fosc1	Ta=25°C	714	840	966	kHz	
1 ' ' '		Ta=25°C	33.0	39	43.5	kHz	1

Relationship between oscillation frequency fosc1 and frame rate frequency ffr

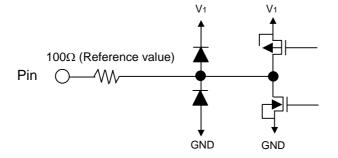
ffr = fosc1/(display duty)/(number of clock of per 1H)

Example: 840kHz/82/128 =80

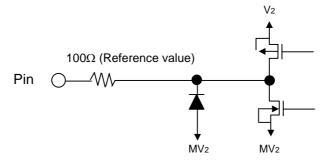
Relationship between oscillation frequency fosc2 and frame rate frequency fFR


fFR = fosc2/(display duty)/(Dividing ratio×3)

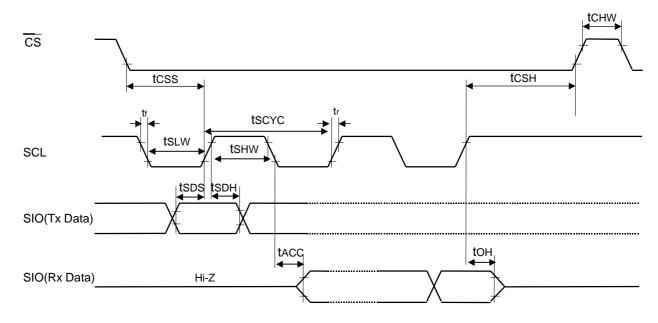
Example: $39kHz/82/(2\times3) = 80$


Display duty and number of clocks of per 1H are set up by DISCTL command.

11.2 I/O Circuit Diagram (For Reference)


 $\ensuremath{\mbox{\ @}}$ I/O Pin (Both the input pin and the output pin are of the same structure.)

② Segment Driver



3 Common Driver

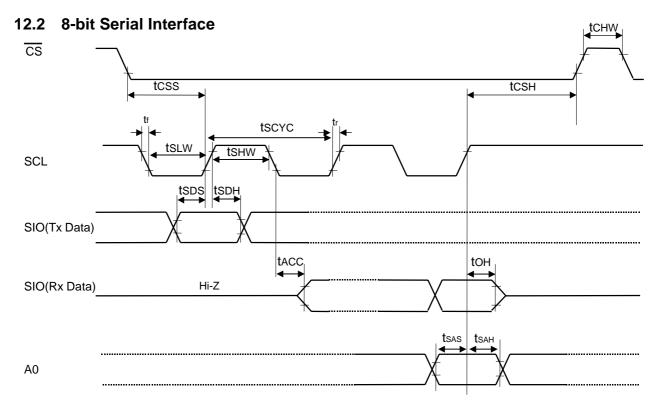
12. AC CHARACTERISTICS

12.1 9-bit Serial Interface

 $V_{DD} = 2.6$ to 3.6V, $V_{DDI} = 1.6$ to V_{DD} , $T_a = -40$ to $+85^{\circ}C$

Parameter	Signal	Symbol	Condition	Min.	Max.	Unit
Serial clock cycle	SCL	tscyc		75	_	ns
Serial clock HIGH pulse width		t shw	_	30	_	
Serial clock LOW pulse width		t sLW		30		
Data setup time	SIO	tsds		20	_	
Data hold time		t sdh	_	20	<u>—</u>	
Data delay time (Hz-data)	SIO	t ACC	CL=30pF	_	100	
			CL=100pF (reference)	_	150	
Data delay time (data-Hz)		tон	CL=30pF	20	_	
			CL=100pF (reference)	20		
CS serial clock time	CS	tcss		40	_	
So contai dicox time		t csH	_	40	_	
		t csHW		40	_	

Note1 The rise and fall times (tr and tf) of the input signal area specigied for less than 10ns.


Note2 Every timing is specified on the basis of 30% and 70% of VDDI.

 $V_{DD} = 2.35$ to 3.6V, $V_{DDI} = 1.6$ to V_{DD} , $T_a = -40$ to $+85^{\circ}C$

Parameter	Signal	Symbol	Condition	Min.	Max.	Unit
Serial clock cycle	SCL	tscyc		110	_	ns
Serial clock HIGH pulse width		t shw	_	50	_	
Serial clock LOW pulse width		tslw		50		
Data setup time	SIO	tsds		25		
Data hold time		t sdh		25		
Data delay time (Hz-data)	SIO	tacc	CL=30pF		120	
			CL=100pF (reference)		180	
Data delay time (data-Hz)		tон	CL=30pF	25	_	
			CL=100pF (reference)	25		
CS serial clock time	cs	tcss		50	_	
So sona dicon amo		t csH	_	50	_	
		tcshw		50	_	

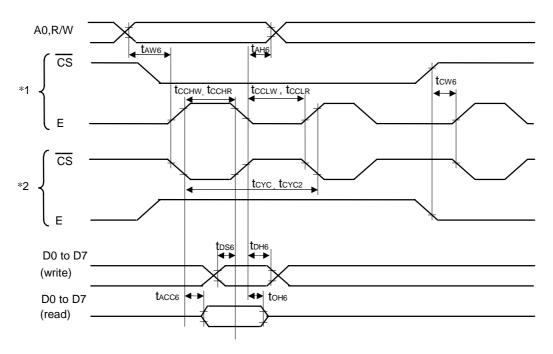
Note1 The input signal rise time and fall time (tr, tf) are specified less than 10 ns.

Note2 All timing signals are specified on the basis of 30% and 70% of VDDI.

 $V_{DD} = 2.6$ to 3.6V, $V_{DDI} = 1.6$ to V_{DD} , $T_a = -40$ to $+85^{\circ}C$

Parameter	Signal	Symbol	Condition	Min.	Max.	Unit
Serial clock cycle	SCL	tscyc		75	_	ns
Serial clock HIGH pulse width		tshw	_	30	_	
Serial clock LOW pulse width		tslw		30	_	
Address setup time	A0	tsas		100	_	
Address holds time		t sah	_	30	_	
Data setup time	SIO	tsds		20	_	
Data hold time		t sdh	_	20	_	
Data delay time (Hz-data)	SIO	t acc	CL=30pF	_	100	
			CL=100pF (reference)	_	150	
Data delay time (data-Hz)		tон	CL=30pF	10	_	
			CL=100pF (reference)	20	_	
CS serial clock time	CS	tcss		50	_	
30 30 and Gook time		tсsн	_	50	_	
		t cshw		50	—	

Note1 The input signal rise time and fall time (tr, tf) are specified less than 10ns.


Note2 All timing signals are specified on the basis of 30% and 70% of VDDI.

 $V_{DD}=\,2.35$ to 3.6V, $V_{DDI}=\,1.6$ to $V_{DD},\;T_a=\,-40$ to $+85^{\circ}C$

Parameter	Signal	Symbol	Condition	Min.	Max.	Unit
Serial clock cycle	SCL	tscyc		110	_	ns
Serial clock HIGH pulse width		t shw	_	50	_	
Serial clock LOW pulse width		t sLw		50	_	
Address setup time	A0	tsas		120	_	
Address hold time		t sah	_	30	_	
Data setup time	SIO	tsds		25	_	
Data hold time		t sdh	_	25	_	
Data delay time (Hz-data)	SIO	tacc	CL=30pF	_	120	
			CL=100pF (reference)	_	180	
Data delay time (data-Hz)		tон	CL=30pF	15	_	
			CL=100pF (reference)	25		
CS serial clock time	CS	tcss		50	_	
So sonal clock time		t csH	_	50	_	
		tcshw		50	_	

Note1 The input signal rise time and fall time (tr, tf) are specified less than 10ns. Note2 All timing signals are specified on the basis of 30% and 70% of VDDI.

12.3 68 Series Parallel Interface

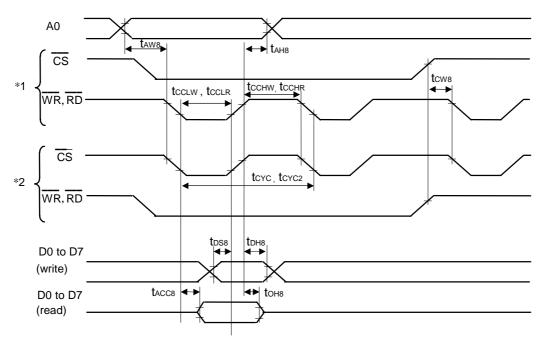
^{*1} shows an access with E when \overline{CS} is LOW. *2 shows an access with \overline{CS} when E is HIGH.

 $V_{DD} = 2.6$ to 3.6V, $V_{DDI} = 1.6$ to V_{DD} , $T_a = -40$ to $+85^{\circ}C$

					/	
Parameter	Signal	Symbol	Condition	Min.	Max.	Unit
Address hold time	A0,R/W	t AH6		10	_	ns
Address setup time		t AW6	_	3	_	
Write cycle	E, CS	tcyc		190	_	
Read cycle		tcYC2		250	_	
Control pulse LOW width (write)		tcclw		140	_	
Control pulse LOW width (read)		tcclr	_	70	_	
Control pulse HIGH width (write)		tcchw		40	_	
Control pulse HIGH width (read)		t cchr		170	_	
CS-E time		tcw6		5	_	
Data setup time	D0 to D7	tos6		10		
Data hold time		tDH6	_	20	_	
Read access time		t _{ACC6}	C: 400mF	_	200	
Output disables time		t 0H6	CL=100pF	5	60	

Note1 The input signal rise time and fall time (tr, tf) are specified less than 10ns.

Note2 All timing signals are specified on the basis of 30% and 70% of VDDI.


 $V_{DD} = 2.35$ to 3.6V, $V_{DDI} = 1.6$ to V_{DD} , $T_a = -40$ to $+85^{\circ}C$

Parameter	Signal	Symbol	Condition	Min.	Max.	Unit
Address hold time	A0,R/W	t AH6		15	_	ns
Address setup time		t AW6	_	5	_	
Write cycle	E, CS	tcyc		250	_	
Read cycle		tcYC2		300	_	
Control pulse LOW width (write)		tcclw		170		
Control pulse LOW width (read)		tcclr		80		
Control pulse HIGH width (write)		tcchw		70		
Control pulse HIGH width (read)		tcchr		200		
CS-E time		tcw6		10		
Data setup time	D0 to D7	t _{DS6}		15	_	
Data hold time		t _{DH6}	_	25	_	
Read access time		t _{ACC6}	O: 400-F	_	250	
Output disables time		t 0H6	CL=100pF	10	70	

Note1 The input signal rise time and fall time (tr, tf) are specified less than 10ns.

Note2 All timing signals are specified on the basis of 30% and 70% of VDDI.

12.4 80 Series Parallel Interface

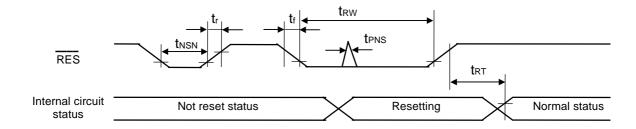
*1 shows an access with \overline{WR} and \overline{RD} when \overline{CS} is LOW. *2 shows an access with \overline{CS} when \overline{WR} and \overline{RD} are LOW.

 $V_{DD} = 2.6$ to 3.6V, $V_{DDI} = 1.6$ to V_{DD} , $T_a = -40$ to $+85^{\circ}C$

Parameter	Signal	Symbol	Condition	Min.	Max.	Unit
Address hold time	A0	t AH8		10	_	ns
Address setup time		t AW8	_	3	_	
Write cycle	WR,RD,	tcyc		180	_	
Read cycle	CS	tcYC2		280	_	
Control pulse LOW width (write)		tcchw		140	_	
Control pulse LOW width (read)		t cchr	_	70	_	
Control pulse HIGH width (write)		tcclw		40	_	
Control pulse HIGH width (read)		tcclr		200	_	
CS-WR, RD time		tcw8		5	_	
Data setup time	D0 to D7	t _{DS8}		10	_	
Data hold time		t _{DH8}	_	20	_	
Read access time		t _{ACC8}	C: 400°F	_	200	
Output disables time		t 0H8	CL=100pF	5	60	

Note1 The input signal rise time and fall time (tr, tf) are specified less than 10ns.

Note2 All timing signals are specified on the basis of 30% and 70% of VDDI.


 $V_{DD} = 2.35$ to 3.6V, $V_{DDI} = 1.6$ to V_{DD} , $T_a = -40$ to $+85^{\circ}C$

Parameter	Signal	Symbol	Condition	Min.	Max.	Unit
Address hold time	A0	t AH8		15	_	ns
Address setup time		t AW8		5	_	
Write cycle	WR,RD,	tcyc		250	_	
Read cycle	CS	tcYC2		300	_	
Control pulse LOW width (write)		t cchw		170	_	
Control pulse LOW width (read)		t cchr	_	80	_	
Control pulse HIGH width (write)		tcclw		70	_	
Control pulse HIGH width (read)		t CCLR		200	_	
CS-WR, RD time		tcw8		10	_	
Data setup time	D0 to D7	t _{DS8}		15	_	
Data hold time		t _{DH8}		25	_	
Read access time		t _{ACC8}	C: 400mF	_	250	
Output disables time		t 0H8	CL=100pF	10	70	

Note1 The input signal rise time and fall time (tr, tf) are specified less than 10ns.

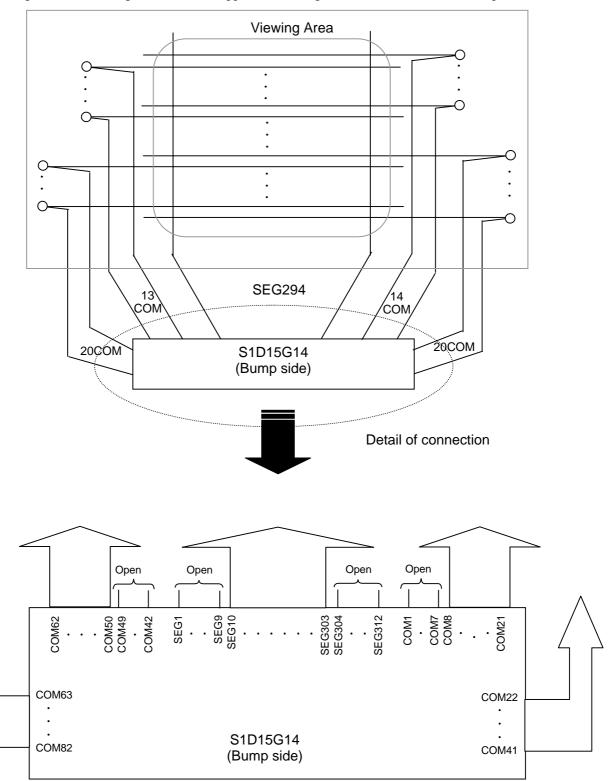
Note2 All timing signals are specified on the basis of 30% and 70% of VDDI.

Reset Timing

 $V_{DD} = 2.6$ to 2.9V, $V_{DDI} = 1.6$ to 2.0V, $T_a = -40$ to $+85^{\circ}C$

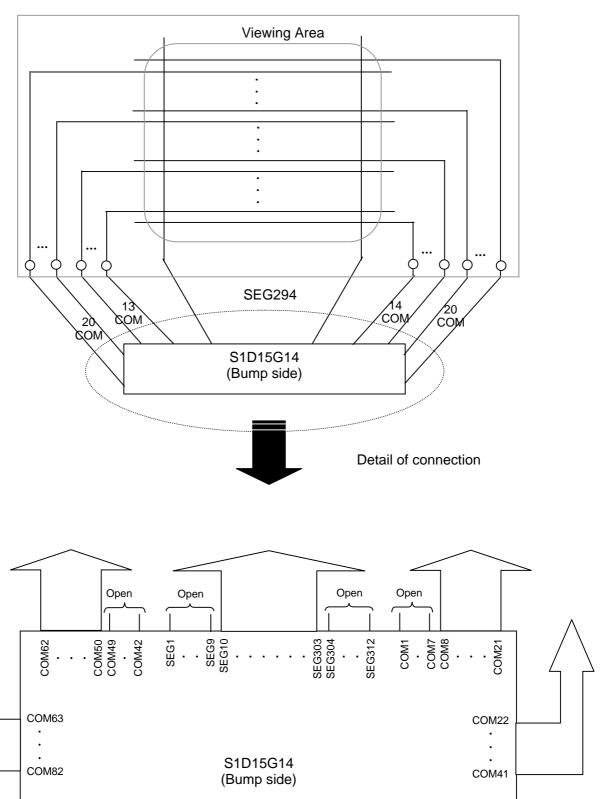
Parameter	Signal	Symbol	Condition	Min.	Max.	Unit
Reset time	RES	t rw	_	3000	_	ns
Reset clear time		t rt	_	_	500	
Insensible pulse width in negative direction		tnsn	_	_	500	
Insensible pulse width in positive direction		tpns	_	_	10	
Rise and fall time		tr, tf	_	_	15	

 $V_{DD} = 2.35$ to 3.6V, $V_{DDI} = 1.6$ to 2.0V, $T_a = -40$ to $+85^{\circ}C$

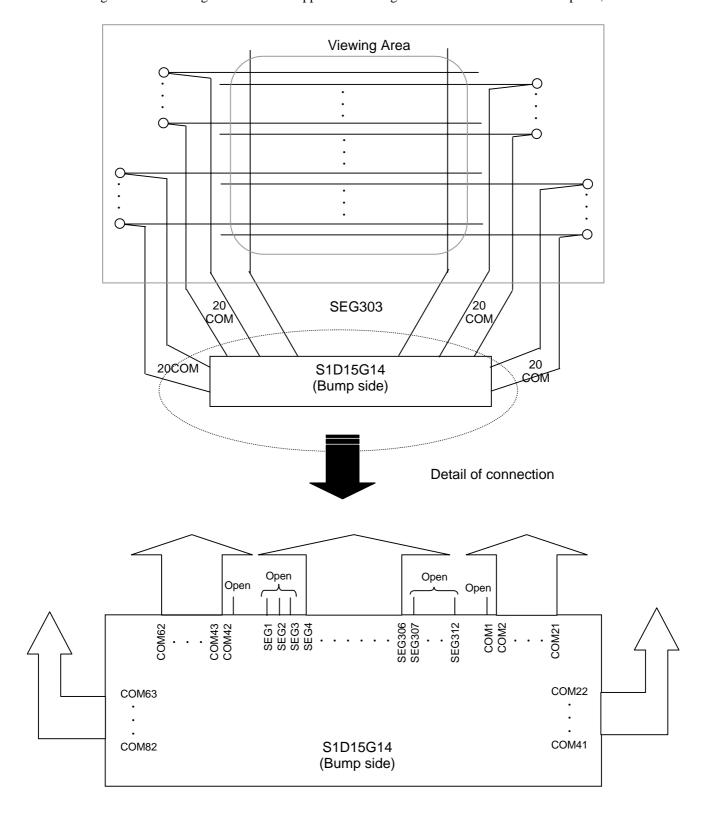

Parameter	Signal	Symbol	Condition	Min.	Max.	Unit
Reset time	RES	t RW	_	5000	_	ns
Reset clear time		t RT	_	_	1000	
Insensible pulse width in negative		tuou			100	
direction		tnsn	_	_	100	
Insensible pulse width in positive		t PNS			_	
direction		LPNS	_	_	5	
Rise and fall time		tr, tf	_	_	15	

- Note1 The input signal rise time and fall time (tr, tf) are specified less than 15ns.
- Note2 All timing signals are specified on the basis of 30% and 70% of VDDI.
- Note3 The reset time's minimum reference value indicates that at least 3000ns is required to initialize the S1D15G14.
- Note4 The maximum reference value of the insensible pulse width (in the positive direction) indicates that the S1D15G14 can maintain its reset status without any reaction even if there is a pulse of 10ns inputted to its RES pin (because of static electricity, etc).
- Note5 The maximum reference value of the insensible pulse width (in the negative direction) indicates that the S1D15G14 can maintain its operating status without any reaction even if there is a pulse of 500ns inputted to its RES pin (because of static electricity, etc).

13. CONNECTION BETWEEN LCD PANELS

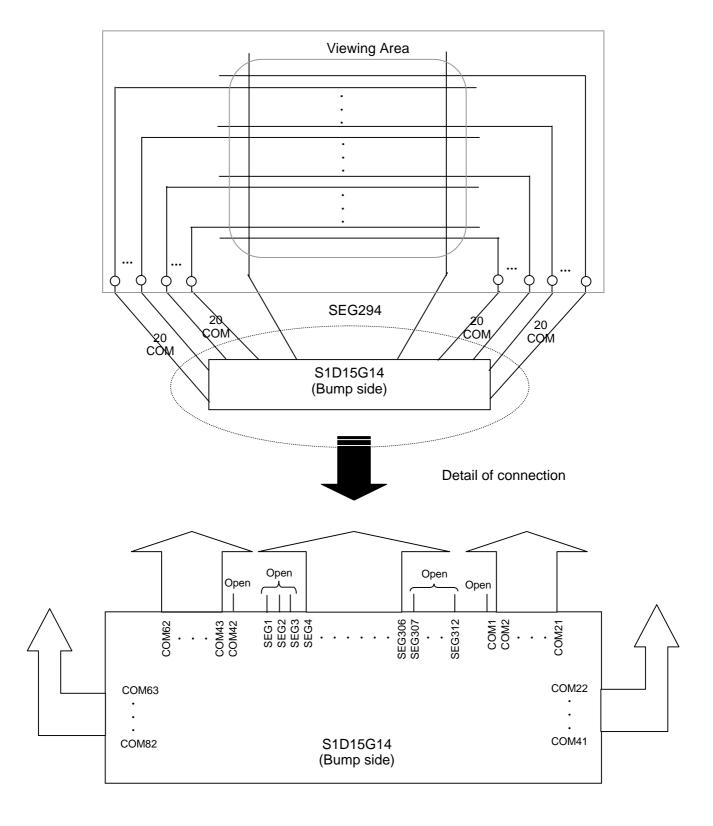

Panel size: 98RGB×67

When through holes are arranged between the upper and lower glasses on the both sides of the panel,

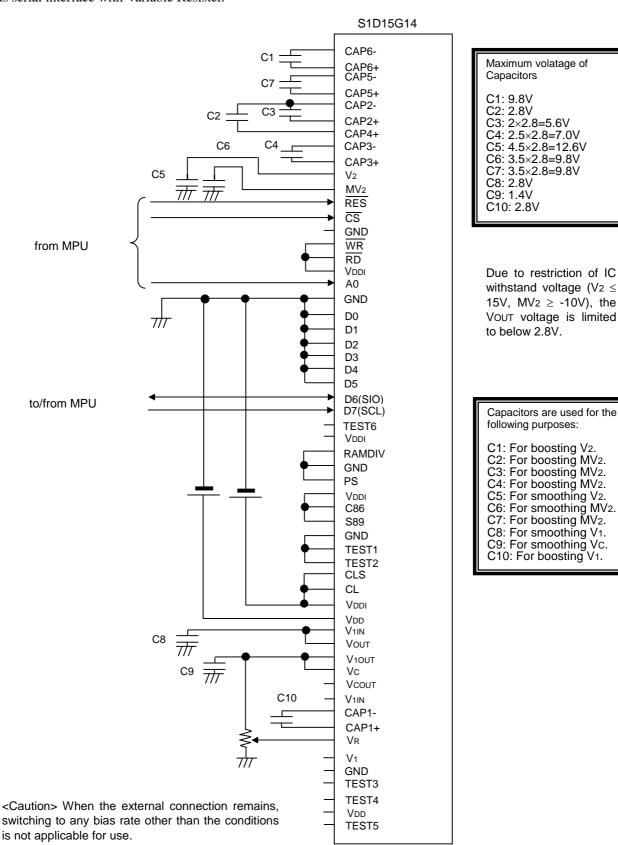


Panel size: 98RGB×67

When through holes are arranged between the upper and lower glasses on the both sides of the panel,

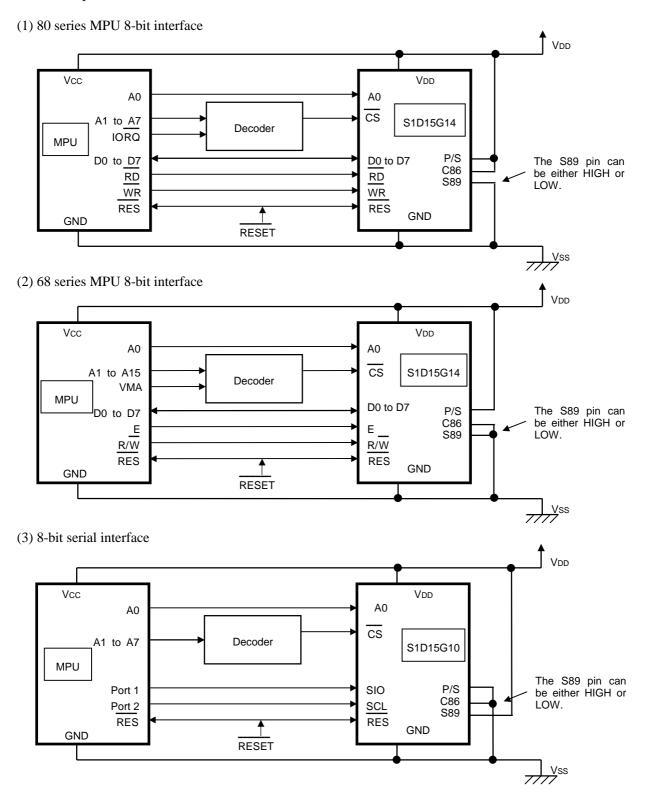


Panel size: 101RGB×80 When through holes are arranged between the upper and lower glasses on the lower side of the panel,


Panel size: 101RGB×80

When through holes are arranged between the upper and lower glasses on the lower side of the panel,

14. EXAMPLE EXTERNAL CONNECTION


1/9bias, 102RGB×82outputs are available. 8bits serial interface with Variable Resister.

15. MPU INTERFACE

15.1 Examples of MPU interface connections

The S1D15G14 can be connected to the 80 series MPU and 68 series MPU. Use of the serial interface allows operation with fewer signal lines. In addition to the following (1), (2) and (3), connection with the 8-bit serial interface is possible.

15.2 Examples of software setup

Examples of Software setup are shown below. For commands whose default values after reset can be used without any change, the command input is not necessary in the following examples.

(1) Command input procedure for turning on the power input the VDD and VDDI.

Be sure to execute the power-on reset. (RES = LOW)

↓

Set the RES to be HIGH, and wait for 5 ms (internal operation stabilizing time)

↓

Software reset (01h): Start the reset operation for the settings inside the IC.

↓

Wait for 5 ms

↓

INIESC (C6h): Initialize the settings inside the IC.

<Display setup 1>

· REFSET(B9H)

Set the states inside the IC.

Display control (B6H)

Set the 1H term, number of N-line reversion, idle mode frequency, LCD bias, RAM size, Display duty

• Gray scale position set (B3H,B4H)

Set the gray scale specifications.

• Gamma curve set (B5H)

Select the gray scale

Common driver output select (BDH)
 Set the output position and sequence of the common driver outputs.

(The order of settings from Display control (B6H) to Common driver output select (BDH) can be changed)

<Power supply setup>

• Power control (BEH)

Set the V10UT output drive capability, operating frequency of the built-in boosting circuit.

• Sleep out (11H)

Built-in oscillation circuit operation

- Voltage control (BAH)
- Write contrast (25H)

Set the LCD voltage.

• Temperature gradient set (B7H)

Set the temperature gradient of the LCD voltage.

• Booster voltage ON (03H)

Built-in power supply circuit operation

<Display setup 2>

 Inversion ON (21H) or Inversion OFF (20H) Inversion/normal of display

· Partial area (30H)

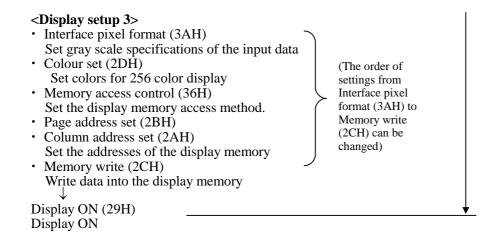
Set the partial display area.

Vertical scroll definition (33H)
 Set the vertical scrolling specifications.

• Vertical scrolling start address (37H)
Set the address of the vertical scrolling.

(The order of settings from Inversion ON(21H) or Inversion OFF (21H) to Vertical scrolling start address (37H) can be changed)

(The order of


settings from Power control

(BEH) to booster

voltage ON (03H)

can be changed)

Power stabilization time as long as 40 ms or more must be secured from Booster voltage ON (03H) to Display ON (29H)

- (2) Command input procedure for turning OFF the power
- ① When the \overline{RES} signal is not used.

```
Display OFF (28H) : Display OFF

↓
Sleep in (10H) : Sleep in

↓
Turn OFF the VDD-VDDI power.
```

Note: In order to discharge the electric charge in capacitors connected to the LCD power supply circuit, execute the Sleep in command to set the IC to be in sleep state before turning of the power. When the output of the LCD power supply circuit becomes low enough, turn OFF the VDD-VDDI power.

② When the \overline{RES} signal is used.

Execute the power ON reset ($\overline{RES} = LOW$)

Turn OFF the VDD-VDDI power.

Note: Turn OFF the VDD-VDDI power when the output of the LCD power supply circuit becomes low enough.

This IC uses the logic voltage of the VDD-GND and VDDI-GND power supply for control of the LCD output driver. Thus, if the power supply VDD-GND, VDDI-GND is turned OFF while voltage is still remaining on the LCD power supply circuit, the LCD output drivers (COM,SEG) can generate uncontrolled output. When the output of the LCD power supply circuit becomes low enough, turn OFF the VDD-VDDI power.

16. PRECAUTIONS

Pay attention to the following concerning the development specification:

- 1. The development specification is subject to change for improvement without advance notice.
- 2. The development specification does not guarantee to use industrial property right and other rights and does not provide any patent right.

Applied examples shown in the development specification are intended to help you understand the product, and the manufacturer shall not be responsible for any trouble arising from using such applied examples.

In operation of S1D15G14, pay attention to the following:

"Precautions on Light"

Properties of semiconductor devices are generally affected according to the principle of solar battery when they are exposed to light. Therefore, this IC may malfunction if exposed to light.

- ① When using this IC, design the structures of devices or mount the IC so that it is shielded from light.
- ② Design the structure of inspection process or mount the IC so that it is shielded from light.
- 3 Protect surfaces, rears and sides of IC chips from light.

However, reliability of the IC is not affected for a long time even if it is operated under slight light where it does not malfunction and their characteristics including current consumption are not influenced.

"Precautions on External Noise"

- ① Operating statuses of and display data in S1D15G14 are maintained by commands, but excessive external noises may affect its internal statuses. Take proper measures in mounting and arranging systems so that they can protected from external noises.
- ② We recommend you to assemble software so that the operating status can be periodically refreshed (by resetting commands and by re-transferring display data) against noises arising suddenly.

"Precautions on COG"

When mounting COG, you should consider resistance components caused by ITO wire between driver chips and external parts to be connected (capacitor, resister, etc.). These resistance components may cause troubles in LCD display and in high-speed operation of the MPU interface.

When mounting COG, design modules paying sufficient attention to the following three points:

- 1. Reduce resistances from driver chip pins to external parts as much as possible.
- 2. Reduce resistance in the power supply pins of the driver chips as much as possible.
- 3. Prepare a COG module sample by changing ITO sheet resistance, and use such a module with sheet resistance allowing sufficient operation margin.

Y/M/D	Page	Contents of revision
Rev. No.	No.(Rev.)	Contents of Tevision
2002/06/05	All pages	New edition
Rev.0.1		
2002/06/18	All pages	Revisions for correcting mistakes and adding explanations
Rev.0.2		P2: 13. MPU Interface was added in the Contents.
		P3: Target value of consumption current was added to the Overview.
		P13: Errors in writing D7(SCL) and D6(SIO) were corrected.
		P22: Correction of errors in writing pin names: $VC \rightarrow VCOUT$, $VCIN \rightarrow VC$
		Revision of confusing description:
		Parts composition is minimized. \rightarrow The step-up capacitor is not necessary.
		P23: Correction of error in writing pin name: VcIN → Vc
		P24: Correction of error in writing pin name: Vout1 → V10UT
		Error in writing Electronic Volume Function was corrected.
		P25: Correction of error in writing pin name: Vout1 → V10UT
		P26: Correction of error in writing pin name: VCIN → VC
		P28: Correction of error in writing pin name: VcIN → Vc
		P29: Addition of explanations.
		Addition of Setting Method of respective selection periods of Normal Mode and Idle Mode.
		P31: Addition of explanation concerning ON/OFF reset sequence.
		P32 to 59: Addition of explanation concerning command default statuses.
		P32: Correction of errors in writing non-operation command functions.
		"To go through the test mode for inspecting IC" \rightarrow Deleted.
		P35: Correction of errors in writing RDDST B28. Functions of 1 and 0 were reversed.
		P39: Correction of errors in writing All Pixels Off Command. $ON \rightarrow OFF$
		P40: Correction of errors in writing WRCNTR Command.
		Optimum contrast → Center value.
		P44: Correction of typing mistake of RAM data read Command.
		P47: Correction of errors in writing MADCTL Command B5 function. 1 and 0 had
		been reversed.
		P50: Change of TSTMOD Command function
		By NOP Command \rightarrow By NOP2 Command
		P50: Addition of NOP2 Command function
		"To go through the test mode for inspecting IC" was added.
		P55: Addition of REFSET Command
		P55: Addition of explanation concerning VOLCTL Command.
		P56: Addition of explanation concerning COMOUT Command.
		Combinations of P10 to P13 were illustrated. The drawing of normal drive was
		inserted.
		P56 to P59: Addition of explanation
		The connection diagram of normal drive was added.
		P60: Change of PWRCTL Command. Change of division clock.
		P62: Correction of errors in writing fosc2 of DC characteristics
		(Clock count) → (Dividing ratio)
		Correction of errors in writing reference voltage VREG $1.5V \rightarrow 1.8V$
		P64, P65: Addition of stipulation concerning Serial AC Timing Load Capacity.
		P66, P67: Addition of Parallel AC Timing Target Specification
		P68: Addition of explanations concerning Reset AC Timing, Negative Dead Pulse Width and Positive Dead Pulse Width
		P73 to P76: Addition of connection example with panel in normal drive.
		P78 to P80: Addition of explanation concerning MPU Interface.

Y/M/D	Page	Contents of revision
Rev. No.	No.(Rev.)	
2002/10/19 Rev.1.0	All pages	Revision for changing specifications and adding explanations. P1: Model name: S1D15G14D00B000 → S1D15G14D01B000
		due to change of specification.
		P2: Expansion of operating supply voltage range and entry of current consumption
		P11: Entry of precautions concerning pin.
		P12: Addition of explanation concerning Set-up Pin. P20, P21: The serial interface timing was changed from 8 bits to 9 bits.
		P22 to P31: Change of specification of and addition of explanation concerning Power Circuit.
		P35 to P61: Change of specification and addition of explanation concerning commands. P63: DC characteristics Addition of description concerning Operating Current
		Consumption and Power Supply Impedance.
		Correction of errors in writing oscillating frequency. The power supply operating voltage range was changed from 2.6V~ to 2.35V~.
		P65 to P72: AC characteristics Review of standard values so as to match each device.
		Addition of characteristic VDD=2.35V~
2002/11/12	All pages	Revision for changing specifications and adding explanations.
Rev.1.1	, pages	No. P5: Addition of explanation Chip thickness, Bump height
		(Reference) → (Reference value. For the detail, refer to the Delivery Specification.)
		No. P16, No. P17: Correction of errors in writing memory map. SEG pin position was
		reversed.
		No. P23: Correction of error in writing Vcou⊤ connection at the time of external
		resistance. Variable resistor → Open.
		No. P37: Correction of error "B14 Horizontal scrolling on/off" was deleted.
		No. P41: Correction of error This ${}^{\circ}C \rightarrow$ This command.
		No. P47: Addition of explanation. PLTAR Command default value was added.
		No. P50: Addition of explanation. MADCTL Command
		Addition of drawing showing correspondence with packaging pattern.
		No. P53: Correction of error in writing Test Mode.
		"To go through the Test Mode by the NOP Command" \rightarrow " by NOP or NOP2 Command."
		No. P55: Correction of error in writing DISCTL Command.
		Addition of explanation "The set value brings an invert cycle." to Setting of Parameters for N Line Inversion.
		No. P56: Addition of explanation concerning DISCTL Command.
		Addition of explanation "Basically, P32="0" is recommended for use."
		Addition of explanation concerning Duty Setting.
		No. P59 to P60: Correction of error in writing COMOUT Command.
		② When the DISCTL Command was used to set to 1/82 duty, 0/1 of
		P13 were reversed for P13=1, P12=1 and B4=0.
		No. P63: Correction of error in writing DC characteristics Unit of LCD ON resistance $K\Omega \rightarrow \Omega$
		No. P68 to P71: Change of specification, AC Characteristics of parallel interface tcw
		$40\text{ns} \rightarrow 5\text{ns Vdd}=2.6 \text{ to } 3.6\text{V}$
		50 ns \rightarrow 5ns VDD=2.35 to 3.6V
		No. P72: Correction of error in writing. Reset cancel time for VDD=2.35 to 3.6V
		100ns → 1000ns
		Addition of explanation. Addition of stipulation concerning tr and tf in Timing Chart.
		No. P77: Addition of explanation. Addition of purposes to use capacitors in External Connection Diagram.

Y/M/D	Page	Contents of revision		
Rev. No.	No.(Rev.)	Revision for changing specifications and adding explanations.		
2002/11/27 Rev.1.2	All pages	No. P33: Change of specification		
Rev. 1.2		C6h TEST mode → Initial escape		
		No. P36: Addition of explanation		
		Add the timing of parallel interface to the RDDST command.		
		No. P48: Correction of error in writing		
		Binary command code 01100000 → 00110100		
		No. P53: Change of specification		
		TEST mode → Initial escape command		
		No. P54: Correction of error in writing		
		Binary command code 10110011 \rightarrow 10110111		
		No. P63: Addition of explanation		
		Add Operating current consumption (3) for idle mode.		
		No. P79, No. P80: Change of specification		
		Change the initialization sequence.		
2003/3/14	All pages	No. P1: Delete of explanation		
Rev.1.2a	1 . 3	etc(programable)		
		No. P2: Correction of error		
		LCD → LCD power circuit		
		genetrator → generator		
		No. P9: Correction of error		
		86MPU interface → 80MPU interface		
		No. P23: Correction of error		
		1.8V → 1.5V		
		Add of explanation		
		"Please be careful for the set-up value not to exceed operation voltage"		
		No. P29: Correction of error		
		Operation and Stop at Idle Mode are replaced.		
		No. P55: Change of description		
		"Do not rewrite" → "Do not change"		
		"Other parameter may be" \rightarrow "Other parameters should"		
		"P1" → "P11", "P0" → "P10"		
		Add of explanation		
		"Please keep in mind"		
		No. P75: Correction of error		
		"C7, C8, C9" → "C8, C9, C10"		

Y/M/D	Page	Contents of revision
Rev. No.	No.(Rev.)	Contents of revision
2003/4/23	All pages	Addition of D2B slice and explanations and change in specification
Rev.1.3		No.2: Addition and correction of the model list page; correction of chapter number
		beyond Chapter 6.
		No. P3: Change of reference for die No.
		No. P7: For page insertion
		No. P8: Addition of model list
		No. P24: Change of voltage control command parameter value $63 \rightarrow 127$
		No. P32: Division of the command list table into 2 parts
		No. P32: Division of the command list table into 2 parts
		No. P33: Addition of command process time and execution time
		No. P34: Addition of command process time and execution time
		No. P44: Correction of error SC \rightarrow SP, EC \rightarrow EP
		No. P50: Addition of comment
		No. P53: Change of TEST mode value (32) 70 → DE
		No. P57: Addition of restrictions on the DISCTL command
		No. P63: Addition of comment
		Change of value
		Example: 840k/82/64=160 → 840k/82/128=80
		No. P65: Timing change in serial interface
		No. P66: Timing change in serial interface
		No. P65, P66, P68, P70: Correction of error
		VDD to $3.3V \rightarrow$ to $3.6V$
2003/5/12	All pages	No. P1: Change of power supply value
Rev.1.4		$V_2 - MV_2 = 10.0V \text{ to } 25V \rightarrow 10.0V \text{ to } 25.5V$
		Correction of error
		No. P24: Correction of error $1.5 \rightarrow 1.8V$
		No. P63: Change of value VREG 1.46 \rightarrow 1.75, 1.5 \rightarrow 1.8, 1.54 \rightarrow 1.85
		Min of MV2 $-10 \rightarrow -10.5$