Простое бюджетное зарядное устройство для гелевых кислотных аккумуляторов малой и средней емкости

Минус на минус дает плюс
(математическое правило)

Кислотные аккумуляторы выпускаются в широчайшем ассортименте емкостей и напряжений. Если для автомобильных аккумуляторов емкостью более 50 А·ч известно множество схем зарядных устройств (ЗУ) различного уровня сложности, то ниша гелевых кислотных аккумуляторов 1…12 А·ч не может похвастаться таким же их разнообразием. Аккумуляторы такой емкости широко применяются, например, в фонарях, как тяговые для детских автомобилей и т.п. Применение для их зарядки ЗУ, предназначенных для «старшей» емкостной линейки, экономически нецелесообразно ввиду избыточности зарядного тока и стоимости.

Если рассматривать режим заряда кислотных аккумуляторов стабильным током, то можно заметить, что он подобен аналогичному режиму заряда стабильным током литиевых аккумуляторов. Отличие касается лишь максимального напряжения, до которого следует заряжать тот и другой типы аккумуляторов: 4,15…4,2 В для литиевых и 13,5…13,8 В для кислотных 12-вольтовых аккумуляторов при резервном их применении или 14,4…15 В — в качестве тяговых.

Практичной могло бы быть ЗУ, построенное на базе обратноходового импульсного инвертора (Flyback), однако ее никак нельзя отнести к «простым и бюджетным», удобным для повторения начинающими из «бросовых» деталей, как это определено в заглавии данной статьи. Учитывая требования электробезопасности, такое ЗУ следует строить на базе сетевого понижающего трансформатора. Но, исходя из принципов «простоты и бюджетности» и к нему предъявляются определенные специфические требования, главное из которых — доступность и отсутствие необходимости перемотки. С этой точки зрения интерес представляют трансформаторы из серии ТН (Трансформатор Накальный), имеющие по крайней мере две вторичных обмотки по 6,3 В, с которых, соединенных последовательно, после выпрямления и фильтрации можно получить около 15…16 В постоянного напряжения. Но, такое напряжение, в свою очередь, выдвигает свои требования к схеме стабилизации зарядного тока. К примеру, известная из даташита на LM317 [1] схема простого стабилизатора тока с ограничением максимального напряжения (Рис. 1) требует входного напряжения не менее, чем на 4,25 В больше (1,25 В на резисторе Rs и 3 В на самом стабилизаторе), чем максимальное напряжение на аккумуляторе в конце его заряда.


Рис 1 Простая схема ЗУ со стабилизацией тока на LM317 [1]

Применение т.н. «Low Dropout» (LDO) стабилизаторов с низким падением напряжения (AMS1085, LT1085, LM2940 и т.п.) К сожалению, картину существенно не меняет: падение напряжения все равно остается в районе 2…2,25 В, чего 15…16 В выпрямленного напряжения не обеспечивают.

Падение напряжения на стабилизаторе тока, построенном с применением LM317 с токостабилизирующим узлом на резисторном токоизмерительном шунте и биполярном транзисторе [1, 2] (Рис. 2, 3), меньше, чем в вышеописанной схеме, всего на 0,55 В.


Рис 2  Зарядное устройство на LM317 с транзисторным датчиком тока [1]


Рис. 3 Зарядное устройство для литиевых аккумуляторов [2]

Конечно, применение трансформатора с выходным переменным напряжением 15 В, снимает эти ограничения, но «доставабельность» таких трансформаторов сомнительна.

По приведенным выше причинам внимание было обращено на LDO стабилизатор напряжения, выполненный на TL431 с регулирующим биполярным транзистором P-N-P структуры [3] (Рис. 4).


Рис. 4  LDO стабилизатор напряжения на TL431 и регулирующем биполярным транзисторе P-N-P структуры

Похожая по построению схема, но на полевом регулирующем транзисторе с P-каналом, описана в [4], а также независимо рассматривается в [1]. Ее главным достоинством является крайне низкое собственное падение напряжения, составляющее порядка 0,1 В и даже меньше, что позволяет полностью использовать выпрямленное напряжение 12-вольтового трансформатора. К сожалению, она совершенно не защищена от превышения выходным током максимально допустимого для регулирующего транзистора значения (в частности, при коротком замыкании выхода). Введение же в нее токочувствительного узла, аналогичного схемам на Рис. 2, 3, лишает ее свойства LDO (малого падения напряжения).

Схема, показанная на Рис 4, обладает существенно худшими параметрами. Так, собственное падение напряжения на ней при указанных на рисунке номиналах деталей, составляет 0,34…0,4 В, на резисторе R3 падает не менее 0,25 Вт мощности, а нагрев VT1 током, проходящим через R3, ведет к нестабильности (снижению) выходного напряжения. На первый взгляд, в ней также нет никаких токочувствительных узлов и она тоже должна была бы страдать от чрезмерных выходных токов. Короче, всё казалось бы, плохо. Но, китайский иероглиф, обозначающий «кризис», обозначает также «возможность». Минусы, присущие данной схеме, оказываются жирными плюсами, если ее применить в качестве ЗУ.

Рассмотрим, за счет чего это достигается.

Биполярный транзистор является токовым п/проводниковым прибором. Т.е., ток коллектора пропорционален току базы, умноженному на коэффициент усиления. Таким образом, выходной ток никогда не превысит значение, заданное током, протекающим через резистор R3. Естественно, коэффициент усиления зависит от коллекторного тока, напряжения коллектор-эмиттер, температуры кристалла транзистора и поэтому может изменяться в определенных пределах. Для других применений это было бы критично, но для ЗУ совершенно несущественно. Главное, чтобы при наихудших условиях зарядный ток не превышал значения, допустимого для данного типа аккумуляторов. Для гелевых кислотных это обычно порядка 0,3 С (где «С» — емкость в А·ч), Рис. 5.


Рис. 5 Параметры режимов заряда гелевого кислотного аккумулятора емкостью 5 А·ч

Далее. Пока в процессе заряда выходное напряжение меньше установленного резистором R5 максимального (14,4…15 В), напряжение на регулирующем выводе шунтового регулятора TL431 меньше референтных 2,5 В и он полностью заперт. Соответственно, полностью заперт и не участвует в работе транзистор VT1. Выходной ток определяется лишь компонентами R3 и VT2. Светодиод HL1 не светится.

По достижении напряжения на клеммах заряжаемого аккумулятора выставленного на холостом ходу 14,4…15 В напряжение на регулирующем выводе шунтового регулятора TL431 достигает референтных 2,5 В, он и, соответственно, транзистор VT1 включаются в работу. VT 1 начинает приоткрываться, шунтируя базо-эмиттерный переход VT2 и тем самым ограничивая дальнейший рост выходного напряжения. Светодиод HL1 начинает светиться за счет тока, протекающего через шунтовый регулятор DA1 свидетельствуя об окончании зарядки. При этом на аккумулятор поступает лишь ток, равный току саморазряда. В таком состоянии он может оставаться подключенным к ЗУ сколь угодно долгое время.

Схемы, показанные на Рис. 2 (полная схема показана на Рис. 6) и Рис. 4, были изготовлены и апробированы с питанием от трансформатора ТС10-1, обеспечивающем на выходе переменное напряжение 12,8 В при токе до 0,7 А. Печатные платы показаны на Рис. 7 и 8, соответственно.


Рис. 6 ЗУ со стабилизацией тока на LM317/MC33269aj и транзисторе


Рис. 7 Печатная плата ЗУ со стабилизацией тока на MC33269aj и транзисторе


Рис. 8 Печатная плата ЗУ со стабилизацией тока LDO стабилизаторе напряжения (по Рис. 4)

При апробации подтвердились недостатки схемы на регулируемых 3-выводных стабилизаторах по Рис. 6, описанные выше. Схемы, настроенные на ток 0,7 А, не сумели выдать более 0,42 А с использованием LM317 и 0,5А с использованием MC33269. Вторая, кстати, не выдержала эксплуатации и пробилась накоротко через несколько часов работы, из-за чего конечное напряжение на заряжаемом аккумуляторе достигло 15,7 В(!!!). К счастью, на нем сработал предохранительный клапан.

Cхема по Рис. 4, обеспечила заряд второго такого же частично заряженного аккумулятора током 0,65 А. Исходное напряжение на нем составляло 12,3 В. Напряжение 14,4 В было достигнуто в течение 3-х часов. При этом регулирующий транзистор VT2, НЕ установленный на радиатор, оставался практически холодным. Радиатор на плату поставлен окончательно лишь потому, что он был уже вырезан (Рис. 9). Не выбрасывать же?!


Рис. 9 ЗУ со стабилизацией тока LDO стабилизаторе напряжения,
частично собранный, в корпусе сетевого адаптера

Чертежи печатной платы для обоих апробированных вариантов схем, приаттачены, однако, должен заметить, что они годятся лишь для данного корпуса. Для другого их придется переразводить по-новому.

Литература:

  • Евгений (EVA) Li-ion и Li-polymer аккумуляторы в наших конструкциях https://datagor.ru/practice/diy-tech/2812-li-ion-i-li-polymer-akkumulyatory-v-nashih-konstrukciyah.html
  • http://www.ti.com/lit/ds/symlink/lm317.pdf
  • Low Dropout линейный стабилизатор на TL431: /mu/index.php?/topic/176155-low-dropout-линейный-стабилизатор-на-tl431/
  • С.Рюмик. Экономичный ограничитель напряжения батареи. – Радио, 2006.– № 11.– С.38.
  • Список радиоэлементовОбозначение
    Тип
    Номинал
    Количество
    ПримечаниеМагазинМой блокнот

    ЗУ на 3-хвыводном стабилизатореDA1
    Линейный регуляторLM3171
    MC33269aj; AMS1085; LT1085; LM2940 и т.п.VT1
    Биполярный транзистор2SC9451
    Любой маломощный n-p-n структурыVD1
    ДиодSY360/14
    1N4001-1N4007C1
    Конденсатор1000мкФ 25В1
    ЭлектролитC2, C3
    Конденсатор100 нФ1
    КерамикаR1
    Резистор100 Ом1
    R2
    Резистор1 Ом1
    R3
    Резистор240 Ом1
    R4
    Подстроечный резистор4.7 кОм1
    HL1
    Светодиод1
    ЗеленыйT1
    ТрансформаторТС10-11
    С выходным напряжением 12…15 В ЗУ на LDO стабилизатореDA1
    Шунтовый регуляторTL4311
    uPC1093 или подобные аналогиVT1
    Транзистор2SB7901
    Любой p-n-p структуры средней мощностиVT2
    ТранзисторКТ837У1
    КТ837Т; КТ837Ф или любой мощный p-n-p структурыVD1
    ДиодSY360/11
    C1
    Конденсатор1000мкФ 25В1
    ЭлектролитC2
    Конденсатор100 нФ1
    КерамикаC3
    Конденсатор47 нФ1
    КерамикаR1
    Резистор430 Ом1
    390…470 ОмR2
    Резистор4.3 кОм1
    3,9k…4,7kR3
    Резистор1 кОм1
    0,91k…1,5k обратно пропорционально усилению транзистора VT2R4
    Резистор20 кОм1
    16k…24k Ограничение диапазона R5R5
    Подстроечный резистор10 кОм1
    R6
    Резистор4.7 кОм1
    T1
    ТрансформаторТС10-11
    С выходным напряжением 12…15 ВДобавить все

    Скачать список элементов (PDF)

    Прикрепленные файлы:

    Добавить комментарий

    Ваш адрес email не будет опубликован.