Простейший датчик температуры на LM35

Начнём с того, что мне как-то понадобился для одного проекта электронный термометр — ртутный казался громоздким и неудобным. Сходу придумалась схема, использовавшая терморезистор (а то и просто резистор, а в одном случае использовалась вообще галогенная лампочка), с усилителем, компаратором и ещё рядом хитростей, чтобы повысить точность. Получалась всё более и более навороченная схема, которая, конечно, после n-ного по счёту изменения не заработала, и разбираться желания уже не было, да и китайский термометр появился в процессе, и разработка заглохла за ненадобностью.

Но одной функции всё-таки не хватало. Термометр бывает полезен, когда надо не перегреть что-нибудь (например, воду в чайнике — для некоторых целей она не должна кипеть). Готового решения нет, значит надо что-то сделать.

Но лишь наученный горьким опытом (с электроникой всегда не везло, и до сих пор мне всегда удавались лишь очень простые конструкции), решил, что сделаю так, чтобы было просто и надёжно. И с неба свалилась микросхема LM35! Благодаря этому чуду задача упрощается до смешного.

Давайте покажу вам схему, которая обрадует любого новичка:

Оказалось, что к микросхеме не нужен даже компаратор.

Помню, когда сам читаешь чужую статью, вечно хочется спросить: а это зачем? а это? Теперь сам попытаюсь сделать так, чтобы никаких вопросов не возникало. Обо всё по порядку:

1. Микросхема LM35 (у неё есть несколько аналогов) специально создана для измерения температуры. Всё, что нужно — это подключить 1 и 3 ногу к плюсу и минусу питания соответственно, и измерить напряжение на среднем выводе. Оно составляет 10 милливольт на каждый градус Цельсия температуры корпуса микросхемы (она сама выглядит как транзистор, кстати). Значит, если там напряжение 230мВ, то температура 23°С.

В даташите про неё расписано ещё много хорошего: и потребляет она 130мкА, и выход у неё низкоомный, и точность в полградуса, и собственный перегрев порядка 0,1°С… В общем, круче некуда. Единственное — страдает она от слишком высоких температур — 150°С максимум.

2. Казалось бы, дальше должна идти микросхема компаратора, которая сравнит это напряжение с тем, которое мы выставим, например, потенциометром? Да, но можно обойтись и без компаратора. Напряжение открывания полупроводниковых приборов — 0,6В, надо это использовать…

3. Лезем в даташит на самый дешёвый транзистор — BC847 и видим, что в очень узком диапазоне напряжения база-эмиттер коллекторный ток сильно меняется. В качестве нагрузки, которая и будет сигнализировать об открытии транзистора, возьмём пьезоэлемент — зуммер. Приятным сюрпризом оказывается то, что от батарейки 9В от потребляет около 5мА, а при небольшом понижении тока перестаёт звучать. То есть включается достаточно резко.

4. Нужно как-то настраивать температуру срабатывания. Поставим переменный резистор, который будет делить напряжение. Движок вверх (по схеме) — напряжение передаётся напрямую, то есть срабатывание будет чуть выше 60 градусов. Движок вниз — коэффициент передачи 0,5, для срабатывания при максимально допустимой температуре в 150 градусов. Постоянный резистор на 10К нужен как раз для того, чтобы при полностью опущенном движке срабатывание всё-таки происходило.

5. Собираем на макетной плате — работает. Можно померить ток базы, необходимый для срабатывания, померить рабочий ток зуммера и обнаружить, что сделать его тише, включив последовательно ему резистор, не получится — он просто перестаёт звучать. Возникает другой вопрос: а что, если при коэффициенте передачи, равном 1, датчик нагреется до 150 градусов и выдаст, соответственно, 1,5В прямо на базу транзистора? Оказалось, что ничего страшного в этом нет — ток базы транзистора может с лёгкостью превышать 10мА, а LM35 выдаёт ток короткого замыкания в 2-3мА. Значит, даже при самом лютом перегреве транзистору ничего не будет.

Значит пора делать печатную плату. Файл формата Sprint-layout есть в приложениях. Вот так оно выглядит на этапе запайки smd-компонентов: (внимание, SMD резистор на фото — 1кОм, под имевшийся у меня подстроечник. Если следовать схеме, то маркировка должна быть 103, то есть 10кОм. В принципе, номиналы можно менять в широких пределах, чем меньше сопротивления — тем больше потребляемый ток в «спящем» режиме, но тем точнее температура срабатывания к расчётной

Верхние три отверстия — под разъём подключения датчика. Три здоровых — под переменный резистор. Ещё две — под питание. А что за три оставшихся, в ряд выстроившихся? Я, честно говоря, не знаю, как это назвать. Это то ли аналоговый выход, то ли отладочный порт, оба названия в такой схеме звучат одинаково смешно. Но факт в том, что сюда можно подпаять разъём и смотреть напряжение на выходе и напряжение на базе транзистора. Всё-таки, втыкать провода в разъём удобнее, чем подпаиваться каждый раз, если что-то понадобится посмотреть.

Вот такой резистор будет использоваться. Обратите внимание, что ножки у него немного подточены и загнуты так, чтобы проходить в нужные отверстия. Есть, правда, проблема, что они слишком короткие для таких извращений и не достают до обратной поверхности платы. Пришлось потом тонкой проволочкой наращивать.

После запайки остальных компонентов выглядит примерно так:

Вот и всё. Разъём для термометра таков, что в него можно напрямую вставить 3 ноги микросхемы (Vcc, то есть плюс питания, то есть левая нога, если смотреть на маркировку, должна быть со стороны зумера), погреть её на свечке (осторожно!), да посмотреть, как меняется выходное напряжение и в какую сторону крутить резистор. Для этого второй разъём как раз и нужен. Температура срабатывания получается немного выше ожидаемой из-за ненулевого тока базы транзистора, но это не страшно.

Для полного счастья датчик надо сделать выводным. Припаиваем 3 провода к датчику и штекер на другой конец. Я ещё залил ноги датчика термоклеем и загнал всё в термоусадку. Получилось вот так:

В таком виде его можно прямо окунать в воду. Если переменный резистор выставить так, чтобы зуммер срабатывал при температуре 90°С, то можно больше никогда не бояться садиться за компьютер, грея что-то на плите. А если на 110, то он будет срабатывать на полное выкипание воды.

Список радиоэлементовОбозначение
Тип
Номинал
Количество
ПримечаниеМагазинМой блокнот

Датчик температурыLM351
VT1
Биполярный транзисторBC8471
R1
Подстроечный резистор10 кОм1
R1 и R2 могут быть произвольного (1..47КОм), но равного номинала.R2
SMD-резистор10 кОм1

Зуммер 9В1
Добавить все

Скачать список элементов (PDF)

Прикрепленные файлы:

Добавить комментарий

Ваш адрес email не будет опубликован.