В связи с возросшей популярностью лампового звука, многие бросились конструировать ламповые усилители. Но, хотя ЛУ менее прихотливы к режимам и элементной базе, все же после сборки их необходимо настраивать, учитывая некоторые особенности.
Внимание! Напряжения в анодных цепях могут быть опасны для жизни. Обесточьте аппарат перед вмешательством, разрядите сглаживающие конденсаторы, выполняйте работы при помощи инструментов с надежной электроизоляцией и, в случае необходимости работы под напряжением, обеспечьте присутствие лиц, способных оказать вам первую помощь при поражении электрическим током.
Как и в любом другом У., проверку и настройку следует вести от «хвоста» к «голове». Начнем с 1-тактной схемы (рис.1).
Наверняка каждый собирал нечто подобное на заре своего увлечения.
Настройка выходного каскада.
Итак, начнем с выходного каскада. Убираем из схемы С7 и рассматриваем каскад на VL2.
1. Слышен гул на частоте 50Гц.
1-1. Проблема с БП.
Мала емкость конденсаторов в сглаживающем фильтре или индуктивность дросселя. Обычно там используются электролитические конденсаторы, которые со временем теряют емкость – «высыхают». Начать следует с конденсатора, ближайшего к выпрямителю. Так же возможно, что сама схема выпрямителя не соответствует потребляемому току. Рекомендую мостовые выпрямители – у них конденсаторы почти в 2 раза меньше, чем в других схемах.
1-2. Идет наводка по сеточной цепи.
Можно немного уменьшить R9, но чем меньше изменения – тем лучше, поскольку в такой схеме это приведет к снижению входного сопротивления каскада и ухудшению АЧХ.
По возможности лучше экранировать все линии прохождения сигнала. В частности от С7 к управляющей сетке VL2.
Еще возможной причиной может быть избыточное сопротивление R10. Но его следует подбирать с крайней осторожностью, поскольку его подбор влияет на режим каскада по постоянному току и может привести к росту нелинейных искажений.
1-3. Мала емкость С8. Нужно заменить или подобрать. Однако следует иметь ввиду, что избыточная емкость приведет к потерям на ВЧ.
2. Слышен шум.
Здесь следует определить тональность шума «коричневый (розовый)» или «белый». Образцы я прикрепил в архиве.
2-1. В случае низкотонального шума нужно проверять конденсаторы в анодной и катодной цепях (а так же другие реактивные элементы, если они есть). Это т.н. местные обратные связи (далее ОС. ООС – отрицательная обратная связь – противофазный сигнал по отношению к рабочему, ПОС – положительная обратная связь – синфазный сигнал), которые ограничивают усиление, но вместе с тем подавляют шумы, нелинейные искажения и самовозбуждение. Они могут не соответствовать заявленным параметрам, отсутствовать или иметь пропадающий контакт (плохо припаяны). Так же не исключена ошибка разработчика самой схемы (обычно такие элементы промаркированы «*», т.е. элемент нужно подобрать).
2-2. Высокотональный («белый») шум появляется в результате неисправности лампы или того же пропадающего контакта. Не спешите сразу менять лампу. Вероятнее всего это окисленная панелька. Лучше ее промыть чем-нибудь нейтральным, либо заменить. Обработка абразивными инструментами может привести к противоположным результатам. Физика этого процесса вполне ясна: при неплотном контакте штырьков с панелькой имеют место искровые разряды, а озон, который образуется при этом, еще активнее окисляет обе поверхности. Определить источник проблемы можно щелкнув по лампе пальцем. Шуршащий звук – неисправность панельки, звенящий – неисправность лампы. Если данный метод не дал результатов, временно замените лампу и повторите попытку.
2-3. Так же причиной любого шума может быть избыточное сопротивление анодно-катодной цепи. Начните подбирать R10 (для начала в небольших пределах, иначе повредите лампу и трансформатор). Если подбор этого резистора не дает ощутимых результатов, я вам не завидую – проблема в режиме анодной цепи по постоянному току. Значит, трансформатор не соответствует необходимым параметрам каскада. Придется либо подобрать другой трансформатор, либо перемотать существующий. Не дай вам Бог пережить это!
3. Нелинейные искажения. Это вид искажений, которые можно наблюдать как геометрические изменения формы сигнала на осциллограмме. На слух они определяются по разным признакам: на НЧ ощутимо возрастает хрип, на ВЧ – «свистящие» становятся «шипящими». Как травило, подобные искажения, следствие перегрузки – избыточное усиление, избыточный уровень входного сигнала, смещение рабочей точки и т.д. Разберемся с наиболее характерными источниками.
3-1. Нехватка/избыток анодного напряжения. Все это приводит к смещению рабочей точки, следовательно, некоторые полуволны подавляются режимом лампы по постоянному току. Ситуация аналогична п.2-3. Работать следует аналогично, но перед этим следует проверить напряжение питания У. в режиме молчания и при наличии сигнала (если снижение уровня входного сигнала позволяет убрать искажения, то выходной каскад исправен). Собственно, в таком случае неуместно говорить об устройстве как об усилителе класса «А».
3-2. Ослабление накала. ВАХ лампы, в этом случае, тоже далека от идеала. В этом легко убедиться подав сигнал на плохо прогретую лампу. Собственно, это не такая уж серьезная проблема. Все сводится к времени готовности У. Такое может случиться и с транзисторным У., только там время зависит от емкости (времени зарядки) сглаживающих конденсаторов.
3-3. Избыток входного напряжения. Можно поставить резистор между разделительным конденсатором С7 и управляющей сеткой VL2. Добавочный резистор и R9 образуют делитель, который понизит сигнал. Это изменит АЧХ, но подъем на НЧ можно решить подбором С7 (уменьшением). Кстати, R9 тоже оказывает определенное влияние на режим по постоянному току, так что его подбором тоже можно прийти к нужным результатам.
Настройка предварительных каскадов. Теперь вернем на место С7 и уберем С2. Таким образом получается уже готовый У., охваченный ОС. По большому счету 2-й каскад нужен только для компенсации потерь в цепях тонкоррекции. Т.е. при напряжении входного сигнала 1,5-2В, 1-й каскад можно вовсе исключить. Справедливости ради следует заметить, что каждый каскад неизбежно вносит искажения и шум, а на выходе все это суммируется. В реальности каждый сам решает сколько каскадов нужно для обеспечения нужного усиления. То, что было сказано выше, справедливо и по отношению к триодам. Здесь задача даже несколько упрощается, поскольку анод нагружен не на трансформатор, а на обычную активную нагрузку – резистор, часть которого, в случае необходимости, можно заменить на подстроечный. Я бы не советовал этим увлекаться, поскольку переменные резисторы тоже могут быть источником шума (в том числе белого, который многие по неопытности списывают на грехи лампы). Итак, не будем обсуждать режим каскада VL1-2 и перейдем к У. в целом. Как видно из схемы в работу включилась очень важная цепь – петля общей ООС. Как мы знаем, фаза ОС зависит от того к какому выводу вторичной обмотки подключена петля. Поскольку разница составляет 180гр., ОС может стать положительной. Если при включении резко возрос шум или фон, значит У. стал генератором. Прежде чем колдовать над триодом, перекиньте цепь ОС на другой вывод вторичной обмотки (оставшийся, соответственно, переключить на общий). Петля состоит из R8R11R12. Резистор в катодной цепи VL1-2 является нагрузкой этого делителя. Как правило ОС не оказывает существенного влияния на режим катода по постоянному току, но для этого должно выполняться условие R11+R12>>R8. При помощи ООС можно значительно снизить шум и искажения, но без фанатизма, поскольку этот эффект достигается снижением усиления вплоть до полной непроходимости сигнала.
Теперь рассмотрим 2-тактные усилители. По сути, предусилитель в таких схемах ничем не отличается, но вместо выходного каскада там стоит фазоинвертор, который раскладывает сигнал на полуволны и усиливает каждую отдельно. Вполне понятно, что режим по постоянному току в таких каскадах смещен в «-», что позволяет максимально усилить положительную полуволну и проигнорировать отрицательную, которая смещена фазоинвертором на 180гр и усиливается вторым плечом. В схемотехнике это реализуется 2 способами. На рис.2 показан способ, где триод является одновременно инвертором, как предварительные каскады и катодным повторителем.
Такой каскад, при кажущейся простоте, довольно сложен в настройке. Прежде всего это связано с тем, что у инвертора и повторителя разные выходные сопротивления и, соответственно, разная нагрузочная способность. Чтобы загнать в режим такой каскад, нужно не только добиться его симметрии относительно полюсов питания, но и тщательно подобрать постоянное напряжение на сетке (соответственно анодное напряжение левого триода Л2), чтобы амплитуды разделенных сигналов были равны по модулю (напоминает работу маятника Максвелла), но сам фазоинвертор не выходил из линейного режима. О последствиях разбалансировки ФИ судите сами. Мое субъективное мнение – бог с ней, с простотой, ради избавления от таких сложностей и лишней лампы не жалко. Другой вариант – когда ФИ состоит из 2 обычных каскадов с общим катодом (Рис.3).
Левый триод Л1 поворачивает фазу на 180гр. и передает на второй триод и нижний противофазный пентод. Правый триод поворачивает фазу еще на 180гр (возвращает в исходное состояние) и передает на синфазный пентод. Кроме описанных операций с однотактными каскадами нам остается только подобрать входной делитель правого триода таким образом, чтобы амплитуды анодных сигналов были равны.
По лампам, пожалуй, всё. В следующей статье будем рассматривать полупроводниковые УМЗЧ. Вопросы обсудим на форуме.
С уважением Павел А. Улитин. г.Чистополь (Татарстан).
В статье использованы иллюстрации из книги Р.Свореня «Усилители и радиоузлы» (1965г.)
Прикрепленные файлы:
- шум.rar (188 Кб)