Ограничивать доступ посторонних лиц к ценной информации поможет кодовый замок. Один из вариантов реализации кодового замка на микроконтроллере приведён в данной статье.
На рисунке ниже изображена схема кодового замка. Ядром схемы является микроконтроллер PIC16F628A. Алгоритм выполнения основных команд изображен на рисунке 2. Код программы написан на языке ассемблер, смотреть листинг CL16F628ATEMP.ASM. Прибор управляется одной кнопкой. Нажатием на кнопку добиваются последовательной смены режимов работы прибора. Звуковое сопровождение нажатия кнопки обеспечивает пьезоизлучатель звука. Для визуального отображения информации служит дисплей со встроенным контроллером.
Полный цикл внутрисхемного программирования и отладки микроконтроллера PIC16F628A был осуществлён при помощи MPLAB IDE v8.15 (интегрированная среде разработки), компилятор MPASM v5.22 (входит в MPLAB IDE v8.15) и MPLAB ICD 2 (внутрисхемный отладчик — «Дебагер»). Для тех, кто не располагает средствами приведёнными выше, а имеет свою программу для работы с HEX файлами и иной программатор, можно в соответствующем проекте найти файл 16F628ATEMP.HEX. Техническую спецификацию микроконтроллера можно найти на сайте [1] и [2].
Микроконтроллер DD1 имеет функциональные выводы RA0, RB0 – RB7, CCP1, которые служат для ввода и вывода информации. Микроконтроллер DD1 не имеет функции принудительного сброса, вывод для сброса подключен через резистор R1 к положительному потенциалу питания. Для генерации тактовой частоты используется встроенный RC-генератор на кристалле.
К выводу RA0 через токоограничивающий резистор R3 подключена тактовая кнопка SB1. В отжатом положении тактовой кнопки SB1 резистор R7 имитирует низкий логический уровень. Микроконтроллер DD1 распознаёт три состояния тактовой кнопки SB1:
Пьезоизлучатель звука P1 помогает различать состояния тактовой кнопки SB1. Так при 1 состоянии генерации звука не происходит, при 2 состоянии звук генерируется до того момента пока микроконтроллер не распознает 3 состояние, а в 3 состоянии генерации звука не происходит.
Для отображения информации используется жидкокристаллический дисплей HG1. Техническую спецификацию дисплея можно найти на сайте [3]. Он имеет контроллер, в котором реализована функция знакогенерации. Отображает две строки по шестнадцать символов в каждой. Управление дисплеем осуществляется через выводы микроконтроллера RB0, RB1, RB4 – RB7. Загрузка данных происходи полубайтами, через выводы RB4 – RB7. «Защёлка» — RB1. Выбор регистра сигнала формируем на выводе RB0. Резисторами R5 и R6 устанавливаем контрастность дисплея HG1. Подсветка дисплея подключена к питанию через токоограничивающий резистор R4. Дисплей HG1 прикручивается к плате 3 x 15 мм латунными стойками и 3 x 6 мм винтами.
Формированием логики на RB2 добиваются открытия или закрытия полевого транзистора VT1 [4], который включает и выключает подключенный к клеммнику X1 электрический замок. Электрический замок должен быть рассчитан на рабочее напряжение 9-15 В и потреблять ток не более 1 А. При подачи напряжения на электрический замок должен открываться, при отсутствии напряжения блокируется (закрывается).
К выводу CCP1 (аппаратная реализация ШИМ, частота 4 кГц, скважность 2) через токоограничивающий резистор R2 подключен пьезоизлучатель звука P1 с рабочей частотой генерации звука 4 кГц.
Прибор запитывается от переменного или постоянного источника напряжения, подключаемого к разъему X2. Номинальное напряжение источника питания 9 – 15 В. Номинальный ток источника питания 1 А. Для стабилизации питания используется обычная схема из диодного моста VD1, линейного стабилизатора DA1, фильтрующих конденсаторов C1 – C4.
Прибор может эксплуатироваться в диапазоне температур от –20 °С до +70 °С.
Микроконтроллер запрограммирован таким образом, что имеет одиннадцать рабочих состояний.
*После переполнения счётчика (больше 65535) происходит обнуление и счёт начинается заново, что приводит к сбою в статистике, в том смысле, что число кодирования может быть больше числа декодирований. Таким образом, рекомендуется обесточить прибор для сброса счётчиков.
**При инкрементировании цифры 9 происходит обнуление.
Конечно, не смотря на то что у микроконтроллера защищена от внутрисхемного чтения EEPROM память (задано в конфигурации) с помощью MPLAB IDE и MPLAB ICD внутрисхемно прочитать и узнать пароль, а следовательно и включить электрический замок не получится. Остаётся более простой способ вскрытия – непосредственно на прямую подать напряжение на электрический замок. Делаю вывод, прибор «кодовый замок» и электрический замок должны быть надёжно защищены от проникновения посторонних лиц. В свободном доступе должна быть кнопка и дисплей.
Стоит отметить, что прибор можно обесточивать, всё равно в энергонезависимой EEPROM памяти после ввода кода сохраняется состояние замка и код. Обесточивать прибор во время сохранения кода в энергонезависимой EEPROMпамяти запрещено.
Стоит обратить внимание на одну важную деталь в работе прибора. При включении прибора он может кратковременно открывать электрический замок (на время мене 1 с), не смотря на то, что в энергонезависимой EEPROM памяти сохранено закрытое состояние электрического замка. Мной при симуляции выполнения программного кода в среде MPLAB IDE данная ошибка не была выявлена. При неожиданном обесточивании прибора во время сохранения кода в энергонезависимой EEPROM памяти можно некорректно сохранить код и восстановить его не удастся, что приведёт к повторному программированию микроконтроллера. Отсюда следует рекомендация о необходимости стабильного и (или) резервного питания прибора. GB1 – резервное питание.
Файлы для изготовления печатной платы смотреть в папке [Board].
Печатная плата и расположение деталей:
В данном устройстве можно заменить следующие детали. Микроконтроллер DD1 из серии PIC16F628A-I/P-xxx с рабочей тактовой частотой 20 МГц в корпусе DIP18. Дисплей HG1 подойдет любой из серии WH1602x. Стабилизатор напряжения DA1 отечественный КР142ЕН5А (5 В, 1.5 А). Полевой MOSFET транзистор VT1 (N-канал) в корпусе I-Pak (TO-251AA), подойдёт аналог номинала указанного на схеме. Пьезоизлучатель звука P1 с рабочей частотой генерации звука 4 кГц. Диодный мост VD1 можно применить любой из серии 2Wxx. Разъём питания X2 аналогичный указанному на схеме с центральным контактом d=2.1 мм. Неполярные конденсаторы С1 и С2 номиналом 0.01 – 0.47 µF x 50 V. Электролитические конденсаторы С3 и С4 ёмкостной номинал тот же, а напряжение не ниже указанного на схеме.
Схема подключения электромагнита:
Схема подключения твердотельного реле:
Ссылки в интернете
№
Название сайтов
Адрес
[1]
Microchip Technology Inc. — a Leading Provider of Microcontroller and Analog Semiconductors
[2]
ООО Микро-Чип — микроконтроллеры и источники питания
[3]
Winstar Display Co., Ltd.
http://www.winstar.com.tw/main.php
[4]
International Rectifier
Список радиоэлементовОбозначение
Тип
Номинал
Количество
ПримечаниеМагазинМой блокнот
DD1
МК PIC 8-битPIC16F628A1
DA1
Линейный регуляторL7805AB1
VT1
MOSFET-транзисторIRLU024N1
VD1
Диодный мост2W101
VD2
Выпрямительный диод1N54031
С1, С2
Конденсатор0.1 мкФ2
С3
Электролитический конденсатор470 мкФ 25 В1
С4
Электролитический конденсатор100 мкФ 10 В1
R1, R6
Резистор10 кОм2
R2
Резистор240 Ом1
R3
Резистор470 Ом1
R4
Резистор10 Ом1
0.5 ВтR5
Резистор1.3 кОм1
R7
Резистор4.7 кОм1
HG1
LCD-дисплейWH1602D-PGH-CT#1
Р1
ЗвукоизлучательРКМ22ЕРР-401
SB1
Тактовая кнопкаSWT-20-71
X1
РазьемDG301-5.01
X2
Разьем блока питанияDS-261B1
GB1
Батарея питания12 В1
Добавить все
Скачать список элементов (PDF)
Прикрепленные файлы:
- Code_Lock.rar (47 Кб)